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Summary  The probabilistic foundations of methods to control the characteristic properties of 
structural materials, expressed as p-quantiles, are discussed. We argue that the acceptance criteria 
in the quality control should be based on quantile estimators complying with the definition of the 
quantile. We introduce the distribution-free concept of definition-based quantile estimator. For 
normal distribution, an application of different types of estimators, as well as some attribute 
methods and mixed methods presently used, are illustrated by operating characteristic curves. We 
recommend the prediction method by which the subjective limit values of the mixed methods are 
eliminated, information from the sample will be used more effectively than in the attribute 
methods, and the questions about the proper confidence level or a “known” variation coefficient 
need not be considered. However, the direct application of the prediction method results in stricter 
quality control than that presently used. Therefore, we recommend adopting p’ > p in such a way 
that if the predicted p’-quantile estimate �̂�𝒑′ is equal to or higher than the lower lilmit L, the 
required value of the p-quantile, the lot is accepted in the quality control. If the present quality 
level is appropriate, the value of p’ can be chosen in such a way that the present level is 
maintained. If not, necessary modifications are possible simply by adjusting p’.  
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Introduction 

Structural safety is characterized by the probability of failure which, when considering a 

single failure mechanism, is determined by two random variables: the resistance of the 

structure (R), and the load to be resisted (E). In the design philosophy of the European 

design codes called Eurocodes, both R and E are related to the characteristic values of the 

relevant variables. Typical characteristic values affecting the safety are the 0.05-quantile 

of the strength and the 0.98-quantile of the natural load. Both are estimated based on a 

limited number of observations. Since the estimated quantiles are used as input for 
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probabilistic safety considerations, it is important to use estimators which in the 

probabilistic sense are as correct as possible. For assorted reasons, discussed later, this is 

not presently done in industrial production.  

While the probabilistic theory of structural safety has made great progress during the 

last eighty years, the knowledge of the strength of the structural materials is vague. In the 

factories, sample sizes of one to three with options of retesting are common. The 

uncertainty associated with small sample sizes and mild acceptance criteria enhances the 

risk of accepting products with defective quality. The main point of this article is to 

illuminate the statistical background of the acceptance criteria to provide standardization 

committees with easily understandable information. The methods to control the 

production process in such a way that the rate of rejection is limited to an economical 

level, see e.g. Schilling and Neubauer (2017), is not treated in this article. 

For practical reasons, discrete strength classes, each with a specific lower limit L for 

the characteristic strength, have been used in structural design. In European design codes 

called Eurocodes, characteristic strength is defined as a p-quantile of the strength. p is a 

small probability, e.g. 0.05 or 0.10. A lot of products belongs to strength class C if the p-

quantile of its strength distribution is at least as high as the lower limit L specified for C. 

For example, when a lot of rebars (reinforcing bars) belongs to class B500, the producer 

claims that the characteristic strength (0.05-quantile) of the rebars is greater than or equal 

to L = 500 MPa.  

The producer’s claim is verified by tests on a sample comprising n specimens 

randomly chosen from the lot. Based on the observed values x1,…,xn, different acceptance 

methods are available. Some of them estimate the p-quantile of the lot and compare the 

estimate �̂�𝑝 with the lower limit L, some others use more heuristic methods. This article 

aims at evaluating the probabilistic background of the former methods, revealing the 

weaknesses of the latter ones, and proposing what could be done to find a balance between 

the p’-quantile actually controlled and the p-quantile assumed in European design 

practice. 

The acceptance methods may be classified in three categories: Attribute, variable, and 

mixed methods. In the attribute methods, a single on-off attribute is given to each 

inspected product. The product either works or not, a measured characteristic either 

exceeds the threshold or not, etc. In the variable methods, the property of the product is 

treated as a continuous random variable. For example, when the strength of three test 

specimens is measured and an estimate for the quantile considered is constructed using 

all measured values, we are using a variable method. If instead, we only check how many 

observed values exceed the threshold value, we are using an attribute method. When using 

an attribute method instead of a variable method, some information is lost. Setting a lower 

limit for the sample mean and another lower limit for the sample minimum is an example 

of mixed methods which include features from both attribute and variable methods. 

We use the yield strength of rebars made of carbon steel as an example to demonstrate 

the acceptance methods. We also assume that the strength is normally distributed, and the 

samples are representative. It is a straight-forward process to extend the results to the 

lognormal distribution. 

Even though there is no dispute about the meaning of a p-quantile, the acceptance 

(conformity) criteria in the national and international standards vary. In Europe, the 
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national criterion for a lot of rebars is typically based on three tests and optional retests. 

A lot is accepted if none of the three measured strength values is below L, but under some 

provisions, one value lower than L is also acceptable. 

In EN 10080 (2005) which is the European product standard for carbon steel 

reinforcement, the strength is understood as the long-term strength. This means that the 

products made during a long period, say six months, comprise the population and the 

sample consists of all test results over that period. The compliance with the strength class 

is determined based on this large sample. This involves a problem that if an unacceptable 

strength level is observed after a period of six months, there is no way to reject the 

products already delivered to the market. Such a method represents monitoring rather than 

control.  

There is also a criterion for each lot, based on three tests. In the following, the 

acceptance criterion of EN 10080 refers to this lot-specific criterion because it controls 

the strength in the structure as understood in EN 1992-1-1 (2004), a part of the design 

standard collection for concrete structures called Eurocode 2.  In EN 10080, the 

conformity criteria for the lots include nationally determined parameters. Since the 

probabilistic background of those parameters has been regarded as obscure, national 

specifications are still used. To facilitate unified European design, criteria for the strength 

control of the reinforcing steel have been included in Eurocode 2. Those criteria are 

relatively mild. In practice, they enable the design according to Eurocode 2 together with 

the national material standards, but they have little to do with the 0.05-quantile. 

According to the standard ASTM 615-M20 (2020), the yield strength of a lot of 

reinforcing bars is acceptable when the yield strength measured from a single specimen 

is greater than or equal to the minimum yield strength L specified for the strength class, 

or when it is at most 7 MPa lower than L, and two additional test results are above it. 

Since a single test result gives no information of the probability distribution, and the same 

7 MPa is used for all strength classes, proper statistical considerations based on quantiles 

are not possible. Therefore, neither ASTM 615-M20 nor any other standard applying 

acceptance criteria based on a single test and optional retests are considered here. 

In the European concrete standard EN 206 (2005), the 0.05-quantile is estimated by a 

method which is not consistent, i.e. the estimator does not converge to the correct value 

even when the sample size increases without limit. Caspeele and Taerwe (2012) have 

proposed an improved method for cores drilled from existing structures, but this, as well 

as the method of EN 206, includes parameters based on engineering judgment rather than 

on statistics.  

To sum up, one of the cornerstones of the European safety philosophy is the 

characteristic material strength expressed as a p-quantile of the strength, but the existing 

standards, such as ISO 12491 (1997), have not been followed in the acceptance criteria. 

This is not required in EN 1990 + A1 (2005), either, even though it can be understood as 

a guidance document for the safety issues.  

This article has been provoked by the authors’ experiences from the European 

standardization of construction products. It does not cover all existing acceptance 

methods and materials but underlines the principles of statistics that are not acknowledged 

in the present practice, clarifies some probabilistic concepts, recommends abandoning of 
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misleading terminology, and encourages the profession to adopt simple and 

probabilistically unambiguous acceptance methods.  

Operating characteristic curves 

Based on a few observations, it is impossible to evaluate any quantile accurately. If the 

actual strength in the considered set of products, called a lot, is close to the required level, 

a small sample size in the quality control means a considerable risk, both of rejecting a 

conforming lot (type I error) and accepting a non-conforming lot (type II error). The 

former case is uneconomical for the producer, the latter unsatisfactory for the consumer.  

A single product is said to be defective when its strength is lower than the limit value 

L. The Acceptance Probability (AP) is the probability that a lot is accepted when the 

chosen acceptance criterion is applied to a random sample taken from that lot. An 

operating characteristic curve (OC curve), see Fig. 1, presents AP as a function of the 

share of defective products in the lot. The OC curves depend both on the acceptance 

criterion and on the sample size. Under certain provisions, the OC curve does not depend 

on the parameters of the distribution.  

The limiting quality level LQL means that a lot with the share of defective products 

greater than that at LQL should be rejected, and otherwise accepted. In Fig. 1, LQL 

corresponds to 5.0%. Consumer’s risk is AP at LQL. At acceptable or target quality level 

(AQL) the producer’s risk 1–AP is small enough to be economically acceptable to the 

producer. The confidence level  of an acceptance criterion can be defined as 1–AP at 

LQL. This is a more general definition than the confidence level defined later for the 

coverage estimator because 1–AP is also defined for criteria which do not include quantile 

estimator. 

An ideal OC curve would be a step function that equals unity for a quality level better 

than or equal to LQL, and zero elsewhere. By increasing the sample size, see Fig. 2, the 

real OC curve becomes steeper and closer to the ideal one, but the risks of type I and type 

II errors never vanish. The curves in Figs 1 and 2 correspond to the prediction method 

described below.  

 

Figure 1. Typical OC curve. 
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Figure 2. OC curves (prediction method for 0.05-quantile). Sample sizes 3, 5, 8 and 20. The 

dashed step curve is the ideal curve. 

In theory the acceptance criterion could be defined by the producer and the consumer 

in such a way that both are satisfied. For structural bulk products, this is not realistic 

because other parties like the vendors, contractors, designers and building owners are 

involved. Furthermore, the strength control is a safety issue, and a subject to regulation 

by the authorities. Since it is impossible to agree on the terms of factory production 

control in each building project separately, standards and other specifications using 

different sample sizes and acceptance criteria have been developed.  

Quantile estimators in quality control 

General 

By definition, 𝑥𝑝 is the p-quantile of a random variable X if and only if 

𝑃{𝑥 ≤ 𝑥𝑝} = 𝑝     (1) 

where x is a random outcome of X, see Fig. 3. 

 

Figure 3. Determining p-quantile 𝑥𝑝 and its estimate 𝑥𝑝 from F and its estimate �̂�, respectively. 
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If F is the strictly monotonous cumulative distribution function (CDF) of a continuous 

X, 𝑥𝑝 = 𝐹−1(𝑝).  For a normally distributed X with mean 𝜇 and standard deviation 𝜎, 𝑥𝑝 

is obtained from 

𝑥𝑝 = 𝜇 + 𝜙−1(𝑝)𝜎     (2) 

where 𝜙 is the CDF of the standardized normal distribution and 𝜙−1 its inverse. In other 

words, for each 𝜇 and 𝜎,  

𝑥𝑝 = 𝜇 + 𝑘(𝑝)𝜎     (3) 

where 𝑘(𝑝) depends on 𝑝  but not on 𝜇 and 𝜎. For the strength distribution of a lot to be 

evaluated, both 𝜇 and 𝜎 are unknown. Their estimates, sample mean �̅� and sample 

standard deviation s, are calculated from strength values x1,…,xn measured in tests on n 

randomly chosen test specimens using Eqs (4) and (5) 

�̅� =  
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1       (4) 

𝑠 = √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
       (5) 

Following Eq. (3), estimates of the type 

�̂�𝑝 = �̅� + 𝑘𝑛(𝑝)𝑠      (6) 

have been used. Eq. (6) presents a rule T which maps the probability p and n observations 

𝑥𝑖 to a unique estimate �̂�𝑝 of 𝑥𝑝 

𝑇: (𝑝, 𝑥1, … , 𝑥𝑛) → �̂�𝑝 = �̅� + 𝑘𝑛(𝑝)𝑠   (7) 

Such rules are called quantile estimators. When L is the lower limit for 𝑥𝑝 in quality 

control, an acceptance method or criterion can be expressed as: 

If �̂�𝑝 ≥ L, the lot considered is accepted, otherwise rejected. 

By varying 𝑘𝑛(𝑝), different estimators are obtained. Because each 𝑥𝑖 contributing to �̅� 

and 𝑠 in Eq. (7) is an outcome of random variable X, �̅� and 𝑆 are random variables and 

so is also their function �̂�𝑝. It is often handy to regard �̂�𝑝 itself as a quantile estimator. 

Definition-based quantile estimators 

When U and V are two random variables and a is a constant, probabilities 𝑃{𝑈 ≤ 𝑎} and 

𝑃{𝑈 ≤ 𝑉} are defined as follows. 𝑃{𝑈 ≤ 𝑉} = 𝑃{𝑢 ≤ 𝑣} and 𝑃{𝑈 ≤ 𝑎} = 𝑃{𝑢 ≤ 𝑎} 

where 𝑢 and 𝑣 are random outcomes of U and V, respectively. Using this notation, Eq. 

(1) or the definition of quantile 𝑥𝑝 becomes 

𝑃{𝑋 ≤ 𝑥𝑝} = 𝑝     (8) 

A formally equivalent equation for �̂�𝑝 is 
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𝑃{𝑋 ≤ �̂�𝑝} = 𝑝     (9) 

In Eq. (8) 𝑥𝑝 is constant; in Eq. (9) �̂�𝑝 is a random variable which estimates 𝑥𝑝. This is 

the only difference. We call the quantile estimators complying with Eq. (9) definition-

based (DBQE). When a DBQE is applied to n observations taken from an infinite 

population, one more observation 𝑥 is taken and compared with �̂�𝑝, and this experiment 

is repeated m times, the share of steps fulfilling 𝑥 ≤ �̂�𝑝 approaches stochastically p with 

increasing m. In this sense �̂�𝑝 complying with Eq. (9) is a probabilistically ideal estimator.  

In the following, Monte Carlo simulations with 105 cycles are performed using the 

free SageMath (2017) code to justify and illustrate some ideas and conclusions. 

Particularly  

1

𝑀
∑ 𝐹(�̂�𝑝,𝑖) ≈𝑀

𝑖=1 𝑃{𝑋 ≤ �̂�𝑝} = 𝑝′    (10) 

with M = 105 is used to check which p’-quantile �̂�𝑝 actually estimates. See App. A for 

the justification of this distribution-free result. When M → ∞ , Eq. (10) implies that 

𝑃{𝑋 ≤ �̂�𝑝} = 𝐸 (𝐹(�̂�𝑝)) = 𝑝′    (11) 

where E denotes expectation. If p’ is = p, �̂�𝑝 is a DBQE, and  

        𝐸 (𝐹(�̂�𝑝)) = 𝑝      (12) 

Furthermore, when Eq. (12) is true, �̂�𝑝 is a DBQE or 𝑃{𝑋 ≤ �̂�𝑝} = 𝑝. This distribution-

free result strongly underlines the importance of some early findings. Eq. (12) has been 

used e.g. to support the ideas that �̂�𝑝 fulfilling Eq. (12) is a good estimator for a 𝑝-quantile 

(Wilks (1941)), and 𝑖/(𝑛 + 1) is a good plotting position for order statistic �̂�(𝑖) (Gumbel 

(1958)). However, this argument has left many later statisticians like Gringorten (1963), 

Cunnane (1978), Hyndman and Fan (1996) and Fuglem et al. (2013) unconvinced. 

Apparently unaware of Eq. (11), they have understood that Eq. (12) only represents one 

nice statistical characteristic without any major probabilistic role so that other criteria 

may also be appropriate. Madsen et al. (1986, 148–149) have shown that 𝑃{𝑋 ≤ �̂�(𝑖)} =

𝑖/(𝑛 + 1), but this result has received little attention, and a belief on plotting positions 

better than 𝑖/(𝑛 + 1) is still reflected in many applications. 

The accuracy of a DBQE increases with n. Wilks (1941) has introduced the concept of 

tolerance limit. When the estimator fulfills Eq. (12), p1 < p and p2 > p, 0 <  < 1 and the 

sample size n is high enough, 𝑃{𝑝1 < 𝐹(�̂�𝑝) < 𝑝2} = . 𝐿1 = 𝐹−1(𝑝1) and 𝐿2 = 𝐹−1(𝑝2) 

are called tolerance limits and  is the two-sided confidence level. A requirement for the 

accuracy of �̂�0.05 might be 𝑃{0.045 < 𝐹(�̂�0.05) < 0.055} = 0.90. In other words, when 

n is chosen high enough, 90% of the estimates �̂�0.05 will be very close to 𝑥0.05 on the 

probability scale. 

Wilks’ two-sided confidence level is a statistically sound measure for the accuracy of 

a quantile estimator. In the acceptance sampling of structural materials, the sample size 

is very small due to the costs of destructive testing. Therefore, strict tolerance limits 
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cannot be set, and account of the sampling error needs to be taken by other means. Wilks’ 

theory can be used for comparison of estimators by fixing first  n, 𝑝1 and 𝑝2.  

Weibull estimator 

Acceptance methods defined by the criterion 

If maximum m observations in sample (𝑥1, … , 𝑥𝑛) are defective, the lot is 

accepted, otherwise rejected. 

are called attribute methods and denoted here Attr(m,n). The attribute methods need not 

estimate quantiles and can be applied to properties which are not continuous variables. 

For small sample sizes in destructive testing, only Attr(0,n), here called Weibull estimator 

𝑇𝑛
𝑤𝑒𝑖(1/(𝑛 + 1)), is relevant to the strength control of low quantiles. The corresponding 

acceptance method can also be called minimum value criterion: if the weakest observation 

is not defective, the lot is accepted.  

If n observations 𝑥1, … , 𝑥𝑛 sorted in ascending order are 𝑥1
′ , … , 𝑥𝑛

′  and 𝑝𝑖 = 𝑖/(𝑛 +
1), the Weibull estimator 

𝑇𝑛
𝑤𝑒𝑖: ( 𝑝𝑖, 𝑥1, … , 𝑥𝑛) → �̂�𝑝,𝑖 = 𝑥𝑖

′    (13) 

See Fig. 4, defines a distribution-free DBQE for n probabilities 𝑝𝑖 = 𝑖/(𝑛 + 1), see 

Madsen et al. (1986, 148–149) and Makkonen et Pajari (2014). 𝑥1
′ , … , 𝑥𝑛

′  are called order 

statistics. Superscript wei refers to the Weibull plotting positions 𝑝𝑖. Fig. 4 illustrates how 

𝑇𝑛
𝑤𝑒𝑖 can be extended to 𝑇𝑛

𝑤𝑒𝑖+ by linear interpolation when 1/(𝑛 + 1) ≤ 𝑝 ≤ 𝑛/(𝑛 +
1), but the interpolation results in an estimator which is only approximately definition-

based. Neither 𝑇𝑛
𝑤𝑒𝑖 nor 𝑇𝑛

𝑤𝑒𝑖+ are defined for 𝑝 < 1/(𝑛 + 1) and for 𝑝 > 𝑛/(𝑛 + 1). 

 

Figure 4. Weibull estimator 𝑇𝑛
𝑤𝑒𝑖(𝑖/(𝑛 + 1)) extended by interpolation to  𝑇𝑛

𝑤𝑒𝑖+(𝑝). 
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Prediction estimator  

For a normally distributed X, application of the criterion (9) to Eq. (7) implies (see App. 

B) that 

𝑘𝑛(𝑝) = 𝑘𝑛
𝑝𝑟𝑒(𝑝) = 𝑡𝑛−1

−1 (𝑝)√1 +
1

𝑛
   (14) 

where 𝑡𝑛−1
−1  is the inverse of Student’s t-function with n – 1 degrees of freedom. The 

estimator 

        𝑇𝑛
𝑝𝑟𝑒: (𝑝, 𝑥1, … , 𝑥𝑛) → �̂�𝑝 = �̅� + 𝑘𝑛

𝑝𝑟𝑒(𝑝)𝑠  (15) 

is definition-based and called prediction estimator in ISO 12491 (1997). Wilks (1941) 

has deducted expression (14) starting from Eq. (12). It is possible that Wilks regarded Eq. 

(11) as self-evident and compelling, but this has not been the case with all later 

statisticians. Even though the prediction method has been included in ISO standards, it 

has not been used widely. 

ISO 12491 and Holicky (2013, 121–122) show that the prediction estimator is a 

special case of Bayesian estimators with no prior knowledge. Holicky also mentions that 

the prediction estimator fulfills Eq. (9). Caspeele and Taerwe (2012) call the prediction 

method “Bayesian method with vague prior information”. As shown in Appendix B, the 

prediction estimator is a direct consequence of Eqs (7) and (9). Thus, no Bayesian 

justification is necessary.  

Coverage estimator 

Even though the prediction estimator is a DBQE, another estimator 𝑇𝑛
𝑐𝑜𝑣(𝑝, 𝛼), which is 

not a DBQE, has been widely used for Gaussian variables. It is called coverage estimator 

because interval [�̂�𝑝, ∞) covers the exact p-quantile 𝑥𝑝 with probability or one-sided 

confidence level 𝛼. The coverage estimator is defined by 

𝑇𝑛
𝑐𝑜𝑣(𝑝, 𝛼): ( 𝑝, 𝑥1, … , 𝑥𝑛) → �̂�𝑝 = �̅� + 𝑘𝑛

𝑐𝑜𝑣(𝑝, 𝛼)𝑠    (16) 

where 𝑘𝑛
𝑐𝑜𝑣(𝑝, 𝛼) is determined from 

𝑃{�̂�𝑝 ≤ 𝑥𝑝} = 𝛼      (17) 

In the following, a shorter expression confidence level is used for 𝛼 when there is no risk 

of mixing it with the two-sided confidence level 𝛽. The greater 𝛼, the lower is �̂�𝑝 and the 

larger is interval [�̂�𝑝,∞). Such an interval estimate is not optimal for the strength because 

the strength is input for the safety considerations in which a point estimate is needed. For 

this reason, �̂�𝑝 obtained from Eqs (16) and (17) is often used as a point estimate even 

though it is logically only the lower end of an interval. Criterion (17) provides no answer 

to the question: which α should be chosen? The intuitively appealing value 0.50 is not 

supported in the literature, and 0.75 is recommended e.g. by Holicky and ISO 12491, 
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apparently without any other justification than the close relation of 𝑘𝑛
𝑐𝑜𝑣(𝑝, 0.75) to 

𝑘𝑛
𝑝𝑟𝑒(𝑝). 

Unlike Wilks’ (two-sided) confidence level , 𝛼 defined by Eq. (17) does not reflect 

the average accuracy of the quantile estimator. For normal distribution, numeric values 

of 𝑘𝑛
𝑐𝑜𝑣(𝑝, 𝛼) can be solved using noncentral t-distribution, see Madsen et al. (1986, 38–

40) and a more detailed proof in App. B. A more general approach, also valid for non-

Gaussian distributions, has been given by Zupan et al. (2007). 

About known standard deviation or variation coefficient 

In long-term production it may appear that, even though the sample mean varies with time 

due to the changes in the production parameters like raw material, machinery etc., the 

standard deviation of the sample is nearly constant, or remains below some upper limit. 

This suggests that the prediction estimator and the coverage estimator depend on the 

sample mean only. Applying criteria (9) and (17) would then result in 𝑘𝑝
′ -factors with 

considerably lower absolute values than those given in Table 1. We now compare the 

quantile estimators 

       �̂�𝑝 = �̅� + 𝑘𝑝
′ 𝜎   known     (18) 

      �̂�𝑝 = �̅� + 𝑘𝑝𝑆    unknown    (19) 

It is unclear which of the cases I and II results in fewer rejected lots. If the sample size is 

small, the variation of S from one sample to another is high and the evaluation of 𝜎 is 

difficult, unless a value considerably higher than the mean of the observed s values is 

chosen. Increasing the sample size may justify a lower “known” 𝜎, but it is both costly 

and reduces the difference between 𝑘𝑝 and 𝑘𝑝
′ .  

So far, there is no consensus on how to evaluate a known 𝜎 without conducting tests 

on large samples during an extended period. One possibility is to regard all observations 

from small samples, taken during an extended period, as one population, the standard 

deviation of which can be regarded as the known '. However, such a long-term 𝜎′ may 

be too conservative when applied to one lot, because the mean value varies from a lot to 

another due to the time-dependent changes in the production parameters. Consequently, 

it is possible that 𝜎′ > 𝑠  and |𝑘𝑝
′ 𝜎′| ≥ |𝑘𝑝𝑠| even though 𝑘𝑝

′ < 𝑘𝑝. This means that no 

advantage is gained by the assumption of a known . 

Unbiased estimators 

Quantiles have traditionally been estimated by first estimating the parameters of the 

assumed distribution function. The goodness of quantile estimators has been evaluated 

by criteria, such as unbiasedness or minimum root mean squared error of the distribution 

parameters. There is no probabilistic justification for such criteria, except when the 

estimated parameter is the mean. The same is true for using the unbiasedness of the 

quantiles themselves as a criterion, see Pajari & al. (2019). We argue that the quantile 

estimators shall be evaluated based on how well they conform to the definition of a 

quantile, i.e. Eq. (9). 

Two common types of an unbiased quantile estimator are discussed in the literature, 

those unbiased relative to the distribution parameters and those unbiased relative to the 
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quantile itself. In addition to the consistency and power, the unbiasedness has been 

regarded as one of the most relevant characteristics of a quantile estimator. The estimators 

used in quality control make an exception. For reasons unknown to the authors, the 

coverage estimator and the prediction estimator have been adopted in international 

standards despite their bias, obviously without major objections. The widely used Weibull 

estimator is also biased, but it has perhaps not been recognized as an estimator at all. 

However, during the last few years, the unbiasedness has been regarded as a goodness 

criterion for low-quantile estimators e.g. by Tur and Derechennik (2019).  

The flaws in this kind of thinking have been discussed by Pajari et al. (2019). If a 

quantile estimator �̂�𝑝 (random variable) is unbiased and Y is its linear function, also Y is 

unbiased. In most practical cases the probability distribution F(X) is nonlinear and the 

unbiasedness of estimator �̂�𝑝 implies that its function 𝐹(�̂�𝑝) is biased and vice versa. Eqs 

(11) and (12) show that if �̂�𝑝 is a DBQE, 𝐹(�̂�𝑝) is unbiased when F is non-linear. Since 

�̂�𝑝 is non-linearly related to 𝐹(�̂�𝑝) except when X is linearly distributed, �̂�𝑝 is biased, 

and if �̂�𝑝 is unbiased, 𝐹(�̂�𝑝) is biased. Consequently, when the probability distribution 

is non-linear and �̂�𝑝 is unbiased, it is not a DBQE. 

Even though the controversy between the DBQEs and unbiased quantile estimators is 

clear, it is interesting to get an impression of the magnitude of the difference. Some 

examples are presented below.  

One might expect that 

�̂�(𝑥) =
1

√2𝜋𝑠2 ∫ 𝑒
−

(𝑡−�̅�)2

2𝑠2 𝑑𝑡
𝑥

−∞
     (20) 

is an appropriate estimate for the cumulative distribution function F of a normally 

distributed X because �̅� and 𝑆2 are unbiased estimators of 𝜇 and 𝜎2, respectively. Eq. 

(20) implies that �̂�𝑝 is obtained from 

          �̂�𝑝 = �̂�−1(𝑝) = �̅� + 𝜙−1(𝑝)√𝑠2   (21) 

For p = 0.05, 𝜙−1(0.05) ≈ 1.645 and  

  �̂�0.05 = �̅� + 𝜙−1(0.05)𝑠     (22) 

represents an estimator 𝑇𝑛
𝑢𝑛,𝑝𝑎𝑟

, unbiased with respect to the parameters 𝜇 and 𝜎2. 

Another estimator 𝑇𝑛
𝑢𝑛,𝑞

, unbiased with respect to the quantile itself, is defined by 

�̂�0.05,𝑛 = �̅� + 𝜉𝑛𝜙−1(0.05)𝑠     (23) 

where the factor 𝜉𝑛 > 1 is properly chosen, see Table 1. For small sample sizes, both 

unbiased estimators differ considerably from the prediction estimator. 
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Table 1. Factor 𝜉𝑛, see Eq. (22), for two unbiased estimators and the prediction estimator. 

 n 3 5 30 ∞ 

 𝑇𝑛
𝑢𝑛,𝑝𝑎𝑟

(0.05) 1.000 1.000 1.000 1.000 

 𝑇𝑛
𝑢𝑛,𝑞

(0.05) 1.128 1.064 1.009 1.000 

 𝑇𝑛
𝑝𝑟𝑒

(0.05) 2.050 1.420 1.050 1.000 

 

Based on Table 1, unbiasedness with respect to quantile is slightly better than 

unbiasedness with respect to distribution parameters, but they both result in an estimator 

which is far from the DBQE.  

Evaluating common estimators 

The Weibull estimator 𝑇𝑛
𝑤𝑒𝑖 with some modifications and the coverage estimator 𝑇𝑛

𝑐𝑜𝑣(𝑝) 

are often used in acceptance criteria. The prediction estimator 𝑇𝑛
𝑝𝑟𝑒(𝑝) is not so popular 

but serves as a benchmark due to its good properties. The other estimators discussed in 

this article behave so badly that they are excluded from this comparison. 

Even though both 𝑇𝑛
𝑤𝑒𝑖 (

1

𝑛+1
) and 𝑇𝑛

𝑝𝑟𝑒 (
1

𝑛+1
) are DBQEs for the same p, their OC-

curves differ, see Fig. 5. For a given n, the risk of both type I and type II error is smaller 

for 𝑇𝑛
𝑝𝑟𝑒

, which exploits all measured data, while 𝑇𝑛
𝑤𝑒𝑖 only uses the lowest order statistic 

𝑥1
′ . The difference is minimal for n = 3, but increases with n. The main disadvantage of 

𝑇𝑛
𝑤𝑒𝑖 as a quantile estimator is the fact that it is not applicable to 𝑝 <

1

𝑛+1
 and 𝑝 >

𝑛

𝑛+1
. 

Interpolation for 
1

𝑛+1
< 𝑝 <

𝑛

𝑛+1
 is possible but provides no advantage over the prediction 

estimator. 

𝑇𝑛
𝑤𝑒𝑖 has been a starting point for numerous acceptance methods provided with 

additional rules which allow the acceptance of some lots which would be rejected by 𝑇𝑛
𝑤𝑒𝑖 

alone, see e.g. EN 1991–1–1 (2004, Annex C). Such acceptance methods are 

probabilistically difficult to interpret because their OC curves in general depend on the 

unknown standard deviation of the population. 

Before evaluating the coverage estimator, the confidence level 𝛼 must be fixed. Some 

values of 𝑘𝑛
𝑝𝑟𝑒

 and 𝑘𝑛
𝑐𝑜𝑣 for p = 0.05 are given in Table 2. For each 𝑘𝑛

𝑝𝑟𝑒(𝑝) it is possible 

to find such an 𝛼 that 𝑘𝑛
𝑐𝑜𝑣(𝑝, 𝛼) = 𝑘𝑛

𝑝𝑟𝑒(𝑝), and for each 𝑘𝑛
𝑐𝑜𝑣(𝑝, 𝛼) it is possible to 

choose p’ in such a way that 𝑘𝑛
𝑝𝑟𝑒(𝑝′) =  𝑘𝑛

𝑐𝑜𝑣(𝑝, 𝛼).  

Table 1 and the OC curves in Fig. 6 show that the prediction estimator and the 

coverage estimator are not far from each other when p = 0.05 and  = 0.75. From the 

producer’s point of view, there is no reason to prefer the coverage estimator at this 

confidence level when n > 3 because, when the quality is satisfactory, it results in a lower 

AP than the prediction estimator.  

Fig. 7 compares the 0.05-quantiles estimated by the prediction estimator and the 

coverage estimator with four different 𝛼. As an example, when n = 3, the coverage 

estimators for 𝑥0.05 with 𝛼 = 0.50 and 0.90 actually estimate 𝑥0.112 and 𝑥0.022, 

respectively. When 𝛼 = 0.75, the resulting error is relatively small for sample sizes 3, 4 

and 5, but there is no point of using the coverage estimator and worrying about 𝛼 when 

the prediction estimator is available for all sample sizes.  
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Figure 5. OC curves for the Weibull and prediction methods; p = 0.05, 0.10 and 0.25, n = 19, 9 

or 3, respectively. 

Table 2. Factors 𝑘𝑛 for estimators 𝑇𝑛
𝑝𝑟𝑒(𝑝) and 𝑇𝑛

𝑐𝑜𝑣(𝑝, 𝛼) when p = 0.05 and 𝛼 = 0.50, 0.75 

or 0.90. 

Sample size n 3 4 5 6 8 10 20 30 

−𝑘𝑛
𝑝𝑟𝑒(𝑝) 3.372 2.631 2.335 2.177 2.010 1.923 1.772 1.727 

−𝑘𝑛
𝑐𝑜𝑣(𝑝, 0.50) 1.938 1.830 1.779 1.750 1.719 1.702 1.671 1.662 

−𝑘𝑛
𝑐𝑜𝑣(𝑝, 0.75) 3.152 2.681 2.463 2.336 2.188 2.104 1.932 1.869 

−𝑘𝑛
𝑐𝑜𝑣(𝑝, 0.90) 5.312 3.957 3.400 3.092 2.755 2.569 2.208 2.080 

 

Figure 6. OC curves for prediction method and coverage method with confidence level  = 0.75 

and p = 0.05; n is the sample size.  

When n > 3 and  > 0.75, see Fig. 8, the average underestimation of the coverage 

estimator increases with increasing 𝛼, and �̂�0,05 → −∞ when 𝛼 → 1. For very large 
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samples 𝛼 plays no role. For better safety, using 𝛼  = 0.90 or even 0.95 instead of 0.75 

have been recommended e.g. by ISO 12491. The safety is indeed improved by strong 

underestimation of the quantile, but the effect depends on the sample size, and the 

consequences on the structural safety are not easy to evaluate quantitatively. It would be 

more transparent to use the prediction method to control a lower quantile, for example 

𝑥0.02, and increase the sample size or use higher safety factors in design when extra safety 

is needed. 

 

Figure 7. p-quantiles actually estimated by coverage estimator 𝑇𝑛
𝑐𝑜𝑣(0.05; 𝛼) and prediction 

estimator 𝑇𝑛
𝑝𝑟𝑒

(0.05). 

 

Figure 8. Confidence level of the prediction estimator until n = 1000. p = 0.05. 

In the prediction estimator, the criterion 𝑃{𝑋 ≤ �̂�𝑝} fixes both 𝑘𝑝
𝑝𝑟𝑒

 and the 

confidence level 𝛼 = 𝑃{�̂�𝑝 ≤ 𝑥𝑝}. Fig. 8 depicts the 𝛼-n relationship of the prediction 

estimator for the 0.05-quantile. With increasing n, 𝛼 approaches 0.50 from above.  

The confidence level of the prediction method decreases with increasing n and 

accuracy of estimation. This underlines the fact that the confidence level is an 

inappropriate measure for the goodness of a quantile estimator. More importantly, 
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𝑃{�̂�𝑝 ≤ 𝑥𝑝} = 𝛼 is a vague starting point for structural safety considerations, because 

such an �̂�𝑝 estimates p’-quantile which varies with n.  

Fig. 9 illustrates Wilks’ two-sided confidence level  for estimators 𝑇𝑛
𝑝𝑟𝑒(0.05) and 

𝑇𝑛
𝑐𝑜𝑣(0.05, 0.75) for two tolerance limits defined by (𝑝1, 𝑝2) = (0.03,0.07) or 

(0.04,0.06). As expected, the prediction estimator is the better one. When n = 3 or 10, 

the risk of falling outside the tolerance limits is higher than 90% or 70%, respectively, 

even when the better prediction estimator is used.  

 

Figure 9. Probability of falling inside Wilks’ tolerance limits when estimating 0.05-quantile with 

prediction estimator and coverage estimator with one-sided confidence level = 0.75. 

Conclusion from the evaluation is clear: instead of the coverage estimator, the 

prediction estimator shall be used. It is also possible to choose the confidence level 𝛼 in 

such a way that these two estimators become identical, but such an 𝛼 depends on the 

sample size. A self-evident way to calibrate the coverage estimator is to abandon it 

entirely, and to use the prediction estimator instead. 

Mixed methods 

It is not uncommon to set two separate lower limits for acceptance: �̅�𝑙𝑖𝑚 for the sample 

mean and 𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 for the minimum value 𝑥𝑚𝑖𝑛 of the sample. In this method both criteria 

�̅� ≥ �̅�𝑙𝑖𝑚 and 𝑥𝑚𝑖𝑛 ≥ 𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 must be met simultaneously, but no p-quantile is estimated. 

Both �̅�𝑙𝑖𝑚 and  𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 depend on p and n. Such an acceptance method is called mixed 

because it has features both of a variable method (�̅�𝑙𝑖𝑚) and an attribute method (𝑥𝑙𝑖𝑚,𝑚𝑖𝑛). 

One way to calibrate �̅�𝑙𝑖𝑚 and  𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 for a given p is to fix the value of acceptance 

probability AP at point x = L. Assume next that the acceptance probabilities 𝐴𝑃,𝑚𝑒𝑎𝑛 =
𝑃{�̅� ≥ �̅�𝑙𝑖𝑚} and 𝐴𝑃,𝑚𝑖𝑛 = 𝑃{𝑥𝑚𝑖𝑛 ≥ 𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 } are given, and the resulting overall 

acceptance probability is = AP. When 𝑋~𝑁(𝜇, 𝜎) and 𝐿 is the limit for the p-quantile of 

X, see App. C, 
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      𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 = 𝐿 + (−𝑘𝑝 + 𝑧1)𝜎       𝑧1 = 𝜙−1 (1 − 𝐴𝑃,𝑚𝑖𝑛

1

𝑛) (< 0)  (24) 

�̅�𝑙𝑖𝑚 = 𝐿 + (−𝑘𝑝 + 𝑧2)𝜎      𝑧2 =
1

√𝑛
𝜙−1(1 −  𝐴𝑃,𝑚𝑒𝑎𝑛) (< 0)  (25) 

Whichever AP-values are chosen, the limits depend both on n and on the unknown 

standard deviation 𝜎 of the lot to be evaluated.  

As an example, consider the yield strength of reinforcing steel bars and set p = 0.05, 

n = 5 and L = 500 MPa (in the following, the numeric strength values are expressed in 

dimensionless form). Even if the exact value of 𝜎 is unknown, it is possible to fix an 

interval which is likely to cover the exact value. Assume that 15 ≤ 𝜎 ≤ 25, which suggests 

that 𝜎 = 𝜎0 = 20 would be a reasonable compromise. We try to determine �̅�𝑙𝑖𝑚 and 

𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 with 𝜎0 = 20 in such a way that, when 𝑥𝑝 of the population corresponds to the 

limiting quality level L, the mixed method yields the same AP = 0.286 as the prediction 

method. Using MC simulation, it comes out that 𝐴𝑃,𝑚𝑒𝑎𝑛 =  𝐴𝑃,𝑚𝑖𝑛 = 0.408 results in AP 

= 0.284 which is close enough to 0.286. In the following, MixY(Z) denotes a mixed 

method OC curve with limit values calculated using n = 5, p = 0.05, and 𝜎0 = Y, applied 

to a lot with true 𝜎 = Z. 

Fig. 10 depicts the limiting OC curves Mix20(15) and Mix20(25) as well as Mix15(15) 

= Mix20(20). The real OC curve depends on the actual 𝜎, but if the assumption 15 ≤ 𝜎 ≤ 

25 is true, it is somewhere between Mix20(15) and Mix20(25). The big difference between 

these curves shows that the mixed method, unlike the prediction method, coverage 

method and Weibull method, is not objective: AP is different for two populations with 

the same share of defective products but different 𝜎. The risk of rejecting good and 

accepting bad lots is then pronounced, unless the limits of the true 𝜎 can be determined 

more precisely. The prediction method (𝑇5
𝑝𝑟𝑒(0.05)) gives a curve which intersects both 

Mix20(15) and Mix20(25) curves. Instead of constant 𝜎0, the sample standard deviation s 

may be used for �̅�𝑙𝑖𝑚 and 𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 which then become lot-specific. It is much simpler to 

use the prediction method than to find appropriate 𝐴𝑃,𝑚𝑒𝑎𝑛 and 𝐴𝑃,𝑚𝑖𝑛 for each lot 

separately, and then apply Eqs (24) and (25).  

Assume next that 𝜎 = 𝜎0 = 20 is known exactly. This knowledge also affects the 

prediction method by reducing 𝑘5
𝑝𝑟𝑒(0.05) = 2.335 to 1.802. Setting 𝐴𝑃,𝑚𝑒𝑎𝑛 =  𝐴𝑃,𝑚𝑖𝑛 

= 0.497, the mixed method and the prediction method yield the same AP = 0.366 at the 

limiting quality level, see Fig. 11. Elsewhere, the mixed method rejects more good lots 

and accepts more bad ones than the prediction method. It Even if it were possible to 

maintain a constant value for 𝜎 to determine it and to verify it, the mixed method would 

provide no benefits.  
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Figure 10. OC curves for 0.05-quantile, n = 5. Prediction method and three -dependent curves 

for a mixed method.  

 

Figure 11. OC curves for 0.05 quantile, n = 5,  is known. Prediction and mixed method. 

Separate limits for �̅�  and 𝑥𝑚𝑖𝑛 bring both complexity and probabilistic obscurity to 

the quality control. Despite this, mixed methods have been adopted e.g. in European 

standards EN 206–1 (2005), EN 10080 (2005) and EN 1992–1–1 (2004, Annex C). In EN 

10080 the limits are a national choice, but neither default values nor any guidance for 

choosing them are given.  

Retesting 

The number of erroneously rejected lots can be reduced by increasing the sample size. A 

naïve trick to reduce the costs of testing would be to apply the acceptance method with 

sample size n1 in Phase 1. If the lot is rejected in Phase 1, n2 more observations are taken 

in Phase 2 and the acceptance method is applied with sample size n = n1+n2. This trick 

results in an OC curve denoted by n1&n2 in Fig. 12. It is above the OC curve for 𝑇𝑛
𝑝𝑟𝑒

 

denoted by n. 
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Figure 12. OC curves for five acceptance criteria. 3, 6 and 9: Prediction method for sample sizes 

3, 6 and 9, respectively. 3&3 and 3&6: Prediction method for sample size 3, and if rejected, 

followed by prediction method for sample size 6 and 9, respectively.  

Both the number of erroneous rejections and the costs are lower than when conducting 

n1+n2 tests on each lot, but this happens at the cost of considerable increase in the 

consumer’s risk because the number of erroneously accepted lots in Phase 2 adds to that 

of erroneously accepted lots in Phase 1. When applying such criteria, the consumer’s risk 

tends to be forgotten.  

European strength control of rebars 

In Europe, a lot of reinforcing steel bars has traditionally been accepted when the 

minimum of three observed strength values exceeds the limit strength L for the 0.05 

quantile. As pointed out above, the minimum of three outcomes is a definition-based 

Weibull estimator for the 0.25-quantile. This criterion can be reformulated as follows: 

When the estimated 0.25-quantile is greater than or equal to the requirement for 

the 0.05-quantile, the lot is accepted, otherwise rejected. 

In several specifications the criterion is even milder. In the method of EN 1990-1-1 (2004) 

(EC2) the lot is accepted if either none of three strength observations is below L, or if the 

minimum is ≥ kL and the mean is ≥ L+a. The recommended values are k = 0.97 and a = 

10.  

The EC2 method is a combination of 𝑇3
𝑤𝑒𝑖(0.25) and additional rules which make the 

OC curve dependent on 𝜎. Two EC2 curves for 𝜎 = 10 and 20 as well as two prediction-

based curves are shown in Fig. 13. The EC2(3,10) curve would be close to the 𝑇4
𝑝𝑟𝑒(0.25) 

curve but the EC2(3,20) curve far above it. Replacing the presently used 𝜎-dependent 

acceptance methods with an objective method based on a DBQE is not possible without 

affecting the acceptance probability.  
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Figure 13. OC curves. EC2 method for standard deviations 𝜎 = 10 and 20. Prediction method for 

p = 0.25, n = 3 and 5. 

Let us consider four cases: 

(a) The criteria are understood as controlling the 0.25-quantile.  

From Fig. 13 it is obvious that when 𝜎 = 10, the curves 𝑇4
𝑝𝑟𝑒(0.25) and EC2(3,10) 

are approximately equivalent. On the other hand, there is no such n that the curve 

EC2(3,20) could be approximated by curve 𝑇𝑛
𝑝𝑟𝑒(0.25).  

(b) The criteria are understood as controlling the 0.05-quantile. 

All criteria are non-conservative. However, the rejection of 4–14 % of the lots is 

uneconomical, and the producer needs to set the target strength higher in such a way 

that the average share of defective products is lower than 5%. The demand for such 

a shifting effect decreases with the effectiveness of the acceptance method. The 

greater n, the lower the target quality.  

(c) The criteria are tuned to result in the present safety level. 

As far as EC2(3, 𝜎) is considered to represent the present safety level, it depends on 

𝜎. 𝑇4
𝑝𝑟𝑒(0.25) ≥ 𝐿 , where L is the lower limit for 0.05-quantile, might be a 

reasonable 𝜎-independent choice to replace the criterion of Eurocode 2. Unlike 

EC2(3, 𝜎), it gives easily understandable statistical background to the calibration of 

the material safety factors which also depend on things not related to the formal 

statistics. Since the sampling error decreases with increasing n, the need for the 

shifting mentioned above also decreases, and choosing n > 4 might mean a lower 

average outgoing strength level. 

(d) Acceptance criterion 𝑇𝑛
𝑝𝑟𝑒(0.05) ≥ 𝐿 is applied. 

For small sample sizes used in destructive testing, this statistically sound alternative 

would be so much stricter and more expensive than the present practice that it will 

hardly be adopted.  
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Discussion 

Structural design needs knowledge of the strength distribution of materials. In Eurocodes 

it is assumed that the actual outgoing strength level in the factories conforms to the p-

quantile of the strength used when calibrating the material safety factors. We have shown 

that in Europe, the acceptance rules for rebars, applied to control the 0.05-quantile, 

actually control 0.25- or higher quantiles. On the other hand, the sample size of the order 

of three is so small that the risk of erroneous rejection is high. To minimize the amount 

of rejected products, the target strength level in production, and obviously also the 

average outgoing strength level, are higher than the lowest acceptable level. In addition, 

some measures like monitoring the long-term strength of the reinforcing steel (average 

strength level over some months), even though it cannot reject anything, works in the 

same direction. Whether these reasons are enough to compensate for the statistical 

mismatch in the acceptance rules, is unknown.  

So far, the present safety level has been regarded as satisfactory. Adopting stricter 

rules like the prediction method for the 0.05-quantile is not realistic as far as the involved 

parties are satisfied with the status quo. However, we strongly recommend using the 

probabilistically founded, simple and transparent prediction method, and abandoning the 

coverage method as well as all variants of the mixed and attribute methods. The solution 

is simple. Choose p’ > p. Accept the lot if �̂�𝑝′ ≥ 𝐿, otherwise reject it, and specify the 

reasons, why it is justified to claim that the acceptance criterion �̂�𝑝′ ≥ 𝐿 implies either 

that the outgoing lots meet the requirement 𝑥𝑝 ≥ 𝐿 or that such a requirement is not 

necessary.  

Conclusions 

In the quality control of structural parameters like the strength, it is preferable to use an 

acceptance method in which the p-quantile is first estimated, and the considered lot is 

accepted or rejected depending on whether the estimate is higher or lower than the limit 

value L. The definition-based prediction estimator is preferable for normally and 

lognormally distributed variables. The definition of a p-quantile is enough to justify it, 

and no Bayesian approach is needed.  

The classical coverage estimator should be abandoned, because the p-quantile which 

it estimates varies with the sample size and the arbitrarily chosen confidence level. For 

small sample sizes, the confidence level 0.75 gives a reasonable accordance with the 

prediction estimator. However, there is no reason to use an approximation when a better 

alternative is available and is equally easy to use. Choosing a confidence level as high as 

0.90, which is often recommended for better safety, results in strong underestimation of 

the p-quantile, the effect of which on the structural safety is difficult to quantify. When 

extra safety is needed, it is preferable to increase the sample size or to modify the safety 

factors.  

Mixed acceptance methods, comprising one lower limit for the sample mean and 

another one for the lowest test result, should not be used. Since the spread is characterized 

by the lowest value only, information is lost in comparison with the prediction method. 
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The lower limits depend on the standard deviation which must be known or estimated. In 

both cases the acceptance probability is sensitive to the standard deviation.  

Acceptance sampling by attributes exploits information from the sample less 

effectively than acceptance sampling by variables. It should not be used when the sample 

size is small and the characteristic strength is defined as a low p-quantile of the probability 

distribution. The conventional method of accepting a lot of products when three test 

results are above the specified lower limit, actually controls the 0.25-quantile. The even 

milder methods presented in some European and national standards control p-quantiles in 

which p is > 0.25. This is far from the 0.05-quantile which is claimed to be controlled.  

The high risk of rejection associated with a small sample size makes the producer set 

the target quality higher than the minimum acceptable level. Consequently, the average 

outgoing quality tends to be higher than that formally controlled. Based on this argument 

we propose that in the quality control of the structural materials, the prediction method 

for a p’-quantile (p’ > p) be adopted to control the p-quantile. By adjusting p’, a rough 

calibration to one of the presently used acceptance methods is possible. In this way the 

acceptance process will not change essentially but the p’-quantile becomes transparent 

and allows appropriate calibration of the safety factors.  
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Appendix A: Expectation of 𝑭(�̂�𝒑) 

Assume that 𝑋 has a continuous density function f and cumulative distribution function 

F. Consider Monte Carlo simulation in which an estimator’s conformity to the criterion 

𝑃{𝑋 ≤ �̂�𝑝} = 𝑝′      (A1) 

is investigated or the p’-quantile which �̂�𝑝 actually estimates is determined. M estimates 

�̂�𝑝,𝑚 are generated and for each estimate, K random numbers 𝑥𝑚,𝑘 for each �̂�𝑝,𝑚 are drawn 

from X. The following MxK matrix illustrates the situation. 𝐼{𝐴} denotes indicator 

function which is = 1 if A is true, otherwise = 0.  

Table A1. Monte-Carlo simulation justifying Eqs. (A2) and (A3). 

    𝐾 → ∞  

𝐼{𝑥1,1 ≤ �̂�𝑝,1}

𝐾𝑀
 

𝐼{𝑥1,2 ≤ �̂�𝑝,1}

𝐾𝑀
 

… 𝐼{𝑥1,𝐾 ≤ �̂�𝑝,1}

𝐾𝑀
 

Σ → 1

𝑀
𝑃{𝑋 ≤ �̂�𝑝,1} 

𝐼{𝑥2,1 ≤ �̂�𝑝,2}

𝐾𝑀
 

𝐼{𝑥2,2 ≤ �̂�𝑝,2}

𝐾𝑀
 

… 𝐼{𝑥2,𝐾 ≤ �̂�𝑝,2}

𝐾𝑀
 

Σ → 1

𝑀
𝑃{𝑋 ≤ �̂�𝑝,2} 

           ⋮ ⋮  ⋮   

𝐼{𝑥𝑀,1 ≤ �̂�𝑝,𝑀}

𝐾𝑀
 

𝐼{𝑥𝑀,2 ≤ �̂�𝑝,𝑀}

𝐾𝑀
 

… 𝐼{𝑥𝑀,𝐾 ≤ �̂�𝑝,𝑀}

𝐾𝑀
 

Σ → 1

𝑀
𝑃{𝑋 ≤ �̂�𝑝,𝑀} 

M → ∞       Σ ↓ Σ ↓  Σ ↓   

𝑃{𝑋 ≤ �̂�𝑝}

𝐾
 

𝑃{𝑋 ≤ �̂�𝑝}

𝐾
 

 𝑃{𝑋 ≤ �̂�𝑝}

𝐾
 

  

The sum of elements on each horizontal line m approaches stochastically 𝑃{𝑋 ≤ �̂�𝑝,𝑚}/𝑀 

= 𝐹(�̂�𝑝,𝑚)/𝑀 when K → ∞. The sum of elements on each vertical line approaches 

stochastically 𝑃{𝑋 ≤ �̂�𝑝}/𝐾 when M → ∞. The sum of all elements approaches 

stochastically both ∑ 𝐹(�̂�𝑝,𝑖)
𝑀
𝑖=1 /𝑀 and 𝑃{𝑋 ≤ �̂�𝑝} when both K and M → ∞. It follows 

that 

𝑃{𝑋 ≤ �̂�𝑝} ≈ 𝑝′ =
1

𝑀
∑ 𝐹(�̂�𝑝,𝑖)

𝑀
𝑖=1     (A2) 

when M is very large. Eq. (A2) greatly simplifies the simulation because there is no need 

to generate any random 𝑥𝑚,𝑘. Furthermore,  

     𝑃{𝑋 ≤ �̂�𝑝} = 𝐸 (𝐹(�̂�𝑝))     (A3) 
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Appendix B: Expressions for k-factors 

General background data 

Assume that 𝑋~𝑁(𝜇, 𝜎). Random variables sample mean and sample deviation are 

denoted by �̅� and S, their outcomes by �̅� and s. It is well-known that 

1. If 𝑋~𝑁(𝜇, 𝜎), p-quantile of X is 𝑥𝑝 = 𝜇 + 𝑘𝑝𝜎 where 𝑘𝑝 = 𝜙−1(𝑝)  

2. Sample mean �̅�~𝑁(𝜇, 𝜎/√𝑛)  

3. Random variable 
𝑄

𝜎2
=

1

𝜎2
∑ (𝑋 − �̅�)2𝑛

𝑖=1  is 𝜒2-distributed with n–1 degrees of 

freedom 

4. If 𝑌~𝑁(0,1), 
𝑌

√
𝑄

𝜎2(𝑛−1)

~𝑡𝑛−1 where 𝑡𝑛−1 is the Student’s t-distribution with n–1 

degrees of freedom 

5. If 𝑌~𝑁(0,1) and c is constant,  
𝑌+𝑐

√
𝑄

𝜎2(𝑛−1)

~𝑡𝑛−1,𝑐 where 𝑡𝑛−1,𝑐 is the noncentral t-

distribution with n–1 degrees of freedom and noncentrality parameter c. 

Prediction estimator, 𝒌𝒏
𝒑𝒓𝒆(𝒑) 

Find such a 𝑘𝑛
𝑝𝑟𝑒(𝑝) that 𝑃{𝑋 ≤ �̂�𝑝} = 𝑝 where �̂�𝑝 = �̅� + 𝑘𝑛

𝑝𝑟𝑒(𝑝)𝑠. 

 

𝑋 − �̅�~𝑁 (0, √𝜎2 +
𝜎2

𝑛
) = 𝑁(0, 𝜎√1 + 1/𝑛) (B1) 

Since  

     
𝑆

√𝑛 
= √

𝑆2

𝑛
= √

𝑄

𝑛(𝑛−1)
    (B2) 

where s is the sample standard deviation, we can write 

𝑈 =
𝑋−�̅�

𝑆√1+1/𝑛 
=

𝑋−�̅�

𝜎√1+1/𝑛 

√
𝑄

𝜎2(𝑛−1)

    (B3) 

The numerator encompasses a normally distributed variable 𝑋 − �̅� divided by its standard 

deviation, i.e. the numerator is ~𝑁(0,1). The denominator is 𝜒2-distributed with n–1 

degrees of freedom. It follows that 𝑈~𝑡𝑛−1 and  

𝑡𝑛−1 (
𝑋−�̅�

𝑠√1+1/𝑛 
) = 𝑝 ⇔

𝑋−�̅�

𝑠√1+1/𝑛 
= 𝑡𝑛−1

−1 (𝑝)   

 (B4) 

Setting 

  𝑘𝑛
𝑝𝑟𝑒(𝑝) = √1 + 1/𝑛 𝑡𝑛−1

−1 (𝑝) and �̂�𝑝 = �̅� + 𝑘𝑛
𝑝𝑟𝑒(𝑝)𝑠   (B5) 

yields  

          𝑃{𝑋 ≤ �̂�𝑝} = 𝑝     (B6) 
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Hence, the prediction estimator (B5) results from purely frequentistic considerations, and 

no Bayesian approach is needed. 

Coverage estimator, 𝒌𝒏
𝒄𝒐𝒗(𝒑, 𝜶) 

Find such a 𝑘𝑛
𝑐𝑜𝑛(𝑝, 𝛼)  that 𝑃{�̂�𝑝 ≤ 𝑥𝑝} = 𝛼 where �̂�𝑝 = �̅� + 𝑘𝑛

𝑐𝑜𝑛(𝑝, 𝛼)𝑠, 𝛼 is the 

confidence level and 𝑥𝑝 = 𝜇 + 𝜙−1(𝑝)𝜎 is the true p-quantile of X. From this criterion 

�̂�𝑝 = �̅� + 𝑘𝑛
𝑐𝑜𝑣(𝑝, 𝛼)𝑠 ≤ 𝑥𝑝     (B7) 

     ⇔
�̅�−𝑥𝑝

𝑆
≤ −𝑘𝑛

𝑐𝑜𝑣(𝑝, 𝛼)     (B8) 

     ⇔
�̅�−𝑥𝑝

𝑠
√𝑛 ≤ −𝑘𝑛

𝑐𝑜𝑣(𝑝, 𝛼)√𝑛    (B9) 

Observing that 
�̅�−𝜇

𝜎/√𝑛
~𝑁(0,1) and  

𝜇−𝑥𝑝

𝜎/√𝑛
 is constant and writing  

        𝑉 =
�̅�−𝑥𝑝

𝑠
√𝑛 =

�̅�−𝑥𝑝

𝜎/√𝑛

√
𝑄

𝜎2(𝑛−1)

=

�̅�−𝜇

𝜎/√𝑛
+

𝜇−𝑥𝑝

𝜎/√𝑛

√
𝑄

𝜎2(𝑛−1)

   (B10) 

we see that  
�̅�−𝑥𝑝

𝑆
√𝑛~𝑡𝑛−1,𝑐 where 𝑐 =

𝜇−𝑥𝑝

𝜎/√𝑛
= −𝜙−1(𝑝)√𝑛. So 

 𝑃{�̂�𝑝 ≤ 𝑥𝑝} = 𝑃 {
�̅�−𝑥𝑝

𝑠
√𝑛 ≤ −𝑘𝑛

𝑐𝑜𝑣(𝑝, 𝛼)√𝑛} = 𝑡𝑛−1,𝑐(−𝑘𝑛
𝑐𝑜𝑣(𝑝, 𝛼)√𝑛) = 𝛼 (B11) 

𝑘𝑛
𝑐𝑜𝑣(𝑝, 𝛼) =

−𝑡𝑛−1,𝑐
−1 (𝛼)

√𝑛
    (B12) 
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Appendix C: Determining limits �̅�𝒍𝒊𝒎 and 𝒙𝒍𝒊𝒎,𝒎𝒊𝒏 

Assume that the acceptance probabilities 𝐴𝑃,𝑚𝑒𝑎𝑛 = 𝑃{�̅� ≥ �̅�𝑙𝑖𝑚} and 𝐴𝑃,𝑚𝑖𝑛 =

𝑃{𝑋𝑚𝑖𝑛 ≥ 𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 } are given, and when they are applied, the resulting overall 

acceptance probability is = AP. When 𝑋~𝑁(𝜇, 𝜎) and 𝐿 is the limit for the p-quantile of 

X 

𝐿 = 𝑥𝑝 = 𝜇 + 𝑘𝑝𝜎      (C1) 

Note that 𝑘𝑝 < 0 for p < 0.5. At the lower limit  

    𝜇 = 𝐿 − 𝑘𝑝𝜎       (C2) 

This is achieved when 𝐴𝑃,𝑚𝑒𝑎𝑛𝐴𝑃,𝑚𝑖𝑛 = 𝐴′𝑃  where 𝐴′𝑃 < 𝐴𝑃 is properly chosen. 

Consider first 𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 = 𝑥0. For each 𝑥0, there is a probability 𝑝0 = 𝐹(𝑥0) which 

satisfies 

𝑃{𝑋 ≤ 𝑥0} = 𝑝0 = 1 − 𝑃{𝑋 > 𝑥0}   or   𝑃{𝑋 > 𝑥0} = 1 − 𝑝0 (C3) 

 𝑃{𝑋𝑚𝑖𝑛 > 𝑥0} = 𝑃{𝑎𝑙𝑙(𝑋𝑖) > 𝑥0} = (1 − 𝑝0)𝑛   (C4) 

where 𝑥1, … , 𝑥𝑛  is a sample taken from 𝑋. To determine 𝑝0  and 𝑥0 we require that they 

are in accordance with the given acceptance probability 𝐴𝑃,𝑚𝑖𝑛  

    𝐴𝑃,𝑚𝑖𝑛 = 𝑃{𝑋𝑚𝑖𝑛 > 𝑥0} = (1 − 𝑝0)𝑛 ⇒ 𝑝0 = 1 − 𝐴𝑃,𝑚𝑖𝑛

1

𝑛  (C5) 

From Eq. (C5) we get 

    𝐹(𝑥0) = 𝜙 (
𝑥0−𝜇

𝜎
) = 𝑝0 = 1 − 𝐴𝑃,𝑚𝑖𝑛

1

𝑛    (C6) 

𝑥0−𝜇

𝜎
= 𝜙−1 (1 − 𝐴𝑃,𝑚𝑖𝑛

1

𝑛)    (C7) 

     𝑥0 = 𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 = 𝜇 + 𝜎𝜙−1 (1 − 𝐴𝑃,𝑚𝑖𝑛

1

𝑛) = 𝜇 + 𝑧1𝜎 = 𝐿 + (−𝑘𝑝 + 𝑧1)𝜎 (C8) 

The sample mean �̅� is normally distributed with mean 𝜇 and standard deviation 𝜎/√𝑛. 

So 

𝐴𝑃,𝑚𝑒𝑎𝑛 = 𝑃{�̅� ≥ �̅�𝑙𝑖𝑚}     (C9) 

   1 − 𝐴𝑃,𝑚𝑒𝑎𝑛 = 𝑃{�̅� < �̅�𝑙𝑖𝑚} = 𝐹{�̅�𝑙𝑖𝑚} = 𝜙 (
�̅�𝑙𝑖𝑚−𝜇

𝜎/√𝑛
)  (C10) 

      �̅�𝑙𝑖𝑚 = 𝜇 +
𝜎

√𝑛
𝜙−1(1 −  𝐴𝑃,𝑚𝑒𝑎𝑛) = 𝜇 + 𝑧2𝜎 = 𝐿 + (−𝑘𝑝 + 𝑧2)𝜎 (C11) 

To summarize: 

𝑥𝑙𝑖𝑚,𝑚𝑖𝑛 = 𝐿 + (−𝑘𝑝 + 𝑧1)𝜎       𝑧1 = 𝜙−1 (1 − 𝐴𝑃,𝑚𝑖𝑛

1

𝑛) (< 0) (C12) 

            �̅�𝑙𝑖𝑚 = 𝐿 + (−𝑘𝑝 + 𝑧2)𝜎   𝑧2 =
1

√𝑛
𝜙−1(1 −  𝐴𝑃,𝑚𝑒𝑎𝑛) (< 0) (C13) 
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