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Extension of paperboard modelling with Föppl–von Kármán
terms for improved stress state under suction pressure
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Summary A practical method for solving the bending stiffness of a thin orthotropic plate based
on measured deflection and known loading was studied. The target application was paperboard
manufacturing and related process control. Here, finite element (FE) method was used to create
virtual paperboard and its deflection data. The accuracy of the linear Kirchhoff plate model
used in the practical method was tested against the FE model with known load and material
properties. It was found that in the case of significant deflections, the linear Kirchhoff model
was not accurate. The non-linear Föppl–von Kármán model takes into account the occurring
membrane stresses and extends on the Kirchhoff model, allowing for larger deflection. The non-
linear Föppl–von Kármán model was found to successfully describe the simulated situation and
could be used to better solve for the paperboard’s bending stiffness values over two axes.
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Introduction

Plate models (e.g. Timoshenko [16]) are useful in predicting the behaviour of relatively
thin plates under different loading scenarios and boundary conditions. In a typical scenario
of mechanics, the plate’s material and geometry are known while calculations are used to
solve for unknown deformation and stresses occurring in the plate under certain loading
and boundary conditions.

The Kirchhoff plate theory has been widely studied (e.g. Timoshenko [16], Wang [17],
Bhaskar [2]) and is applicable to many cases of small deflections. The Föppl–von Kármán
(FVK) theory, originally developed by Föppl [4] and von Kármán [9], extends upon the
Kirchhoff theory, allowing the effects of the membrane stresses—typical of situations with
significant deflection of a thin plate. Hakim [6] performed a literary review of the FVK
plate theory about the stress distributions in a plate. The solving of the FVK equations
analytically is very difficult and the validity of these equations has been questioned, e.g.,
by Ciarlet [3]. Lee [10] also discussed some problems of the theory, as well as some pitfalls
in its practical application.
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Paperboard and cardboard are anisotropic because of the fibrous nature (see e.g.
Karakoç [8] and Niskanen [13]). However, due to the formation of machine made pa-
perboard web, paperboard is often modeled using three orthogonal planes of symmetry:
planes perpendicular to the machine direction, cross-machine direction and thickness di-
rection (see e.g. Mäkelä [12], Marynowski [11], Garbowski [5]). The bending stiffness
of paperboard is typically measured by mechanical tests conducted on test pieces after
manufacturing (e.g. ISO 5628:2019 and TAPPI T 489), but this procedure is very slow
for process control.

This work focuses on the development of a practical reverse-method that solves un-
known material properties. The plate deformation, as well as its loading, are known (mea-
sured) and the goal is to solve for the plate’s bending stiffnesses [14]. This methodology
does not require knowledge about the boundary conditions, since the effect of boundary
conditions are ’embedded’ in the deformation field of the real world measurement.

We simulate a model of a supported paperboard plate using finite element model
with capable solid elements and dense mesh. Thus, the inherent property scatter in real
paperboard is excluded. When compared to the use of shell elements [15], a better solution
of the in-plane stress-strain state is available in the thickness direction. Additionally,
improved computation of the boundary condition with a contact is reached. In the new
reverse-method, the finite element analysis (FEA) solution of deformations is processed
fast (Matlab) similarly to the industrial target application. Especially the reverse-solved
paperboard bending stiffness is studied in detail.

Plate modelling

Notation

We use the notation
(x, y, z) := (x1, x2, x3) (1)

for the Euclidean coordinate axes in R3 that describe the undeformed state of the plate.
The displacement functions of the points in the material are

(u, v, w) := (u1, u2, u3) : R3 → R (2)

for x-, y- and z-directions respectively. The plate is assumed parallel to the xy-plane and
its mid-surface2 has z = 0 for all points. The material is assumed symmetric wrt. the
mid-surface and the positive z-direction is chosen towards the deflection of the plate due
to an external load distribution, q (w > 0).

Kinematic hypotheses

The kinematic hypotheses follow the bending of a plate, as written in many works (see
for example [2]). The displacements ui (for bending) are assumed to have the form

ui = u0
i [x1, x2]− x3

∂u3

∂xi

, i ∈ {1, 2}

u3 = u3[x1, x2]. (3)

2We use ”mid-surface” to refer to the middle surface of the plate in the thickness direction, as opposed
to ”middle of the plate”, which refers to the middle area in the xy-plane.
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Furthermore, it is assumed that the partial derivatives

∂u3

∂xi

, i ∈ {1, 2}

are significantly larger than any other partial derivative of the displacements; for the
second powers it holds that

∂uk

∂xi

∂uk

∂xj

= 0 if k ̸= 3 ∨ i = 3 ∨ j = 3. (4)

Strain-displacement relations

The finite strain-displacement relations are given according to the Green strain tensor [7]:

ϵij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

+
3∑

k=1

∂uk

∂xi

∂uk

∂xj

)
. (5)

Applying equations 3 and 4, the approximate strains are

ϵ̂ij = ϵ0ij[x1, x2]− x3
∂2u3

∂xi∂xj

if i, j ∈ {1, 2} (6)

where

ϵ0ij =
1

2

(
∂u0

i

∂xj

+
∂u0

j

∂xi

+
∂u3

∂xi

∂u3

∂xj

)
, i, j ∈ {1, 2} (7)

are called the membrane strains. We use the notation ϵ̂ to describe the approximate strain
in the plate equation.

Moment equilibrium

The material in this study is assumed orthotropic and is described by nine elastic con-
stants:

Ex, Ey, Ez, elastic moduli

νxy, νxz, νyz, Poisson’s ratios

Gxy, Gxz, Gyz shear moduli

For the elastic moduli and Poisson’s ratios, we use

νij
Ei

=
νji
Ej

. (8)

The bending stiffness of the orthotropic plate for the state given in 3 is defined as

Dx =
Exh

3

12η
, Dy =

Eyh
3

12η
, Dxy =

νxyEyh
3

12η
, (9)

where h is the (undeformed) thickness of the plate and

η = 1− ν2
xy

Ey

Ex

. (10)
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The plate model here uses an approximation

σ̂xx =
1

η

(
Exϵ̂xx + νxyEy ϵ̂yy)

σ̂yy =
1

η

(
Ey ϵ̂yy + νxyEy ϵ̂xx)

σ̂xy = 2Gxy ϵ̂xy (11)

for the in-plane stresses. The notation σ̂ describes the approximate stress in the plate
equation. The moments per unit length are then defined as

mx :=

∫ h/2

−h/2

zσ̂xx dz =

∫ h/2

−h/2

z

η

(
Exϵ̂xx + νxyEy ϵ̂yy) dz

=
z2

2η

(
Exϵ

0
xx + νxyEyϵ

0
yy

)
︸ ︷︷ ︸

evaluates to 0

− z3

3η

(
Ex

∂2w

∂x2
+ νxyEy

∂2w

∂y2

)∣∣∣∣∣
h/2

−h/2

= −Dx
∂2w

∂x2
−Dxy

∂2w

∂y2
,

my :=

∫ h/2

−h/2

zσ̂yy dz =

∫ h/2

−h/2

z

η

(
Ey ϵ̂yy + νxyEy ϵ̂xx) dz

= −Dy
∂2w

∂y2
−Dxy

∂2w

∂x2
,

mxy :=

∫ h/2

−h/2

zσ̂xy dz =
Gxyh

3

6

∂2w

∂x∂y
. (12)

For loads other than pure moment, an infinitesimally small volume (’element’) of the plate
experiences shear forces per unit length, Qx and Qy, in the positive z-direction, caused
by the external load distribution, q. The situation is depicted in Figure 1.

Taking the sum of all the moments about the x- and y-axes (and disregarding the
relatively small moments due to the load q, and due to the changes in Qx and Qy [16]),
we have

Qx =
∂mx

∂x
− ∂mxy

∂y
,

Qy =
∂my

∂y
− ∂mxy

∂x
. (13)

Membrane stress relations

Let us define a stress funtion F : R3 → R such that

∂2F

∂x2
:=

Ny

h
:= σ̂yy[x, y, 0] =

1

η

(
Eyϵ

0
yy + νxyEyϵ

0
xx)

∂2F

∂y2
:=

Nx

h
:= σ̂xx[x, y, 0] =

1

η

(
Exϵ

0
xx + νxyEyϵ

0
yy)

∂2F

∂x∂y
:= −Nxy

h
:= −σ̂xy[x, y, 0] = −2Gxyϵ

0
xy. (14)

83



Figure 1: The forces and bending moments affecting a small plate element

For the equilibrium of resultant forces in the plane, it must hold that

∂Nx

∂x
+

∂Nxy

∂y
= 0

∂Ny

∂y
+

∂Nxy

∂x
= 0. (15)

Equation 14 can be inverted to

ϵ0xx =
1

Ex

∂2F

∂y2
− νxy

Ex

∂2F

∂x2

ϵ0yy =
1

Ey

∂2F

∂x2
− νxy

Ex

∂2F

∂y2

ϵ0xy = − 1

2Gxy

∂2F

∂x∂y
. (16)
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Taking the second partial derivatives of the membrane strains, summing, and applying
equation 7, we have

∂2ϵ0xx
∂y2

+
∂2ϵ0yy
∂x2

− 2
∂2ϵ0xy
∂x∂y

=
∂3u

∂x∂y2
+

∂3w

∂x∂y2
∂w

∂x
+

(
∂2w

∂x∂y

)2

+
∂3v

∂x2∂y
+

∂3w

∂x2∂y

∂w

∂y
+

(
∂2w

∂x∂y

)2

− ∂3u

∂x∂y2
− ∂3v

∂x2∂y
− ∂3w

∂x2∂y

∂w

∂y
− ∂2w

∂x2

∂2w

∂y2
−
(

∂2w

∂x∂y

)2

− ∂w

∂x

∂3w

∂x∂y2

=

(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2
. (17)

On the other hand, substituting 16 into the first expression of 17, we have

∂2ϵ0xx
∂y2

+
∂2ϵ0yy
∂x2

− 2
∂2ϵ0xy
∂x∂y

=
1

Ex

∂4F

∂y4
− νxy

Ex

∂4F

∂x2∂y2
+

1

Ey

∂4F

∂x4
− νxy

Ex

∂4F

∂x2∂y2
+

1

Gxy

∂4F

∂x2∂y2
. (18)

These together yield one of the FVK equations:

1

Ey

∂4F

∂x4
+

1

Ex

∂4F

∂y4
+

(
1

Gxy

− 2vxy
Ex

)
∂4F

∂x2∂y2
=

(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2
. (19)

Transverse force equilibrium

By summing the total forces acting in z-direction in Figure 1, we have

−Qx[x] dy +Qx[x+ dx] dy −Qy[y] dx+Qy[y + dy] dx+ q dx dy = 0. (20)

Applying the Taylor approximation as well, as equations 13 and 12, we arrive at the
Kirchhoff plate equation [16]

Dx
∂4w

∂x4
+H

∂4w

∂x2∂y2
+Dy

∂4w

∂y4
= q, (21)

where

H = 2Dxy +
Gxyh

3

3
. (22)

Since the plate is deflected, the forces per unit length (N as defined in equation 14)
also have a non-negative z-component proportional to the sine of the angle, α, between
the plate’s surface and the xy-plane. This component is depicted in Figure 2. The z-
components of the resulting total forces affecting a small volume element are calculated
using the Taylor approximation and small angle approximation as
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Figure 2: A view from the side of a bent plate depicting the z-component of the in-plane
force per unit length Nx. This figure is an adaptation from the literature [16].

(Nx)z = −Nx dy︸ ︷︷ ︸
force[x]

∂w

∂x︸︷︷︸
sin(α[x])

+

(
Nx +

∂Nx

∂x
dx

)
dy︸ ︷︷ ︸

force[x+ dx] (Taylor)

(
∂w

∂x
+

∂

∂x

(∂w
∂x

)
dx

)
︸ ︷︷ ︸

sin(α[x+dx]) (Taylor)

= Nx
∂2w

∂x2
dx dy +

∂Nx

∂x

∂w

∂x
dx dy, (23)

where we ignored all terms that included the third powers of the infinitesimally small
lengths dx, dy. Similarly, we have

(Ny)z = Ny
∂2w

∂y2
dx dy +

∂Ny

∂y

∂w

∂y
dx dy

(Nxy)z = 2Nxy
∂2w

∂x∂y
dx dy +

∂Nxy

∂x

∂w

∂x
dx dy +

∂Nxy

∂y

∂w

∂y
dx dy. (24)

Summing the expressions 23 and 24 while applying equation 15, and adding them to the
total force in equation 20, we obtain the second FVK equation

Dx
∂4w

∂x4
+H

∂4w

∂x2∂y2
+Dy

∂4w

∂y4
= q + h

(
∂2F

∂y2
∂2w

∂x2
− 2

∂2F

∂x∂y

∂2w

∂x∂y
+

∂2F

∂x2

∂2w

∂y2

)
. (25)

Equations 19 and 25 are called the Föppl-von Kármán equations for large deflection of
plates.

Finite element model

A finite element model of a thin plate suspended over a support with a circular hole
was analysed in Abaqus/Standard 2021 (Simulia). The model consists of two parts: A
30 mm × 30 mm plate with a thickness of 0.3 mm, and a rectangular support with
a circular 23 mm (diameter) cut hole in the middle. The plate is set on top of the
support. The modeled plate is a representation of thin paperboard, whereas the support
is a representation of a relatively thick and rigid machined metal part with a cut hole. The
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model geometry is illustrated in Figure 3. Rigid body motion constraints were introduced
in one corner of the support, restricting all translations and rotations. No boundary
conditions were given to the plate.

The plate-simulating paperboard is modeled as a homogeneous solid 3D-object. The
material model is defined by nine engineering constants. The constants’ values are shown
in Table 1. The support is an isotropic homogeneous solid 3D-object, but is modeled
analytically rigid since the support is assumed significantly stiffer than the plate.

The plate is meshed with uniform 0.15 mm cubic elements, which yields 200 elements
in the width directions and two elements in the thickness direction. Uniform shape and
size are used for convenience—to allow easy use of data in the reverse-method. With these
choices, the thickness direction is also divided into three ’layers’ of nodes (i.e. two ’layers’
of elements), one of which is the mid-surface of the plate. This ensures that the analytical
plate model and its membrane stresses can be compared to those of FE analysis. The
elements of the plate are 3D-stress elements with quadratic geometric order (C3D20R).
The support has less dense mesh (typical element dimension 1 mm) and is meshed by
first (geometric) order elements. Its mesh is also not rectangular near the circular cut.

A uniform constant pressure difference (−1000 Pa) is applied to the nodes in the
bottom of the plate in the area of the circular cut in the support, which simulates suction
(negative pressure difference) in the real measurement system. The clamped boundary
conditions are set by the corner of the support plate. The surface-to-surface contact was
placed between the plate and the support. The node to surface discretization method and
frictionless finite sliding formulation was used for the contact. Geometric nonlinearity was
included in the model.

Figure 3: The meshing of the FE models. A portion of the plate has been removed for
clarity.
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Table 1: Material constants used in simulations. Units: 109 Pa, except Poisson’s ratios
are unitless. Source: [1]

Material Ex Ey Ez νyz νxz νxy Gyz Gxz Gxy

Carton stock 7.44 3.47 0.040 0.021 0.008 0.15 0.099 0.137 2.04
Linerboard 90 lb 7.46 3.01 0.029 0.021 0.109 0.117 0.104 0.129 1.80

The reverse-method

The reverse-method for solving the paperboard’s bending stiffness utilizes measured data
from its deflection and the applied lateral load. Here, this measured data is represented
by FE-simulated mid-surface deflection and the load used in the FE-model, respectively.
The calculations are performed using Matlab scripts.

Firstly, the fourth order partial derivatives present in equation 21 are obtained by
differentiating the discrete deflection data, w, using the central difference method, for
example

∂w

∂x
[xn, ym] =

w[xn+1, ym]− w[xn−1, ym]

xn+1 − xn−1

, (26)

recursively. The derivatives are also median and frequency filtered to remove noise.
Second, a calculation domain, Ω, is chosen by the operator and the calculated fourth

partial derivatives and the known load (q) are used to form system of linear equations

Dx
∂4w

∂x4
[xn, ym] +H

∂4w

∂x2∂y2
[xn, ym] +Dy

∂4w

∂y4
[xn, ym] = q[xn, ym], [xn, ym] ∈ Ω (27)

according to equation 21. The unknowns to be solved from this system are Dx, Dy and
H. If the plate’s thickness and stress state are also known (as in FE models), equation
25 may be used to form this system of linear equations by adding the additional terms to
right sides of the equations.

Finally, the unknowns of the system are solved. The system has three unknowns and
as many equations as there are data points in the chosen domain, hence least squares
fitting is used. The domain is chosen such that the plate equations hold within it.

Results

Simulations were conducted with the FE-models and the deflection and inputs were used
and compared to the ones given by the reverse-method. The following sections show
the results using the ”Carton stock”-material with its constants in Table 1. In essential
consideration is the application of deflection data at the middle of plate, i.e., sufficiently
far from strong effects by the boundary conditions (as modelled in FE).

Effect of approximations on the stress-distributions

The stress distributions according to the plate model’s hypotheses were calculated and
and compared to the stress distribution obtained from the FE analysis. The displacements
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Figure 4: The mid-surface stress σ̂xx calculated according to eqs. 11 and 6 divided by
the corresponding FE-simulated one in the middle of the plate. Linear interpolation was
used where the denominator is close to zero.

u0
x, u

0
y and w of the mid-surface, similarly, were used to calculate the strains ϵ̂ij according to

equations 6 and 7 for each node in the model and for the comparison purpose. The stresses
σ̂ij were then calculated according to equation 11 using the same material constants as in
the FE-model.

Figure 4 shows the results for the stress distribution in x-direction in the middle plane
of the plate. The calculated and FE analysis values are in relatively good agreement, with
the exception of the near-edge regime (nodes near the contact forces between the plate
and its support). These results in the middle of the plate show, that the approximated
stresses of the plate equation do not significantly differ from the stress distributions of
the FE-model.

Similar results are obtained for the stresses in the top and bottom surfaces of the
plate i.e. the stresses due to moments. The relative errors between the calculated and
simulated stresses are around 1%–2% data points (nodes in FE mesh) reasonably far from
the contact and regimes where the stress value is close to zero.

Accuracy of plate equations

The ability of the plate equations to represent the FE-model (its material model) was
tested. Using the FE-simulated data, the external load q in equations 21 and 25 was
resolved and compared to the (constant) pressure difference used in the FE simulation.
The bending stiffnesses Dx, Dy and H were calculated from the engineering constants
used in the FE material model according to equation 9. The thickness of the plate,
h, was obtained from the initial part (FE-model). The partial derivatives of w come
from differentiating the simulated mid-surface deflection, and the derivatives of the stress
function F come from the simulated membrane stresses according to equation 14.

The classical Kirchhoff plate equation 21 was first tested. The resulting re-solved load
distribution is shown in Figure 5. The loading is approximately the same as the -1000 Pa
pressure difference used in the simulation. There are however large opposite sign loads in
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the areas near the contact to the support. More interestingly, the calculated load near the
center of the area (hole) is significantly different from the input of FE simulation. This
suggests that the classical plate theory is insufficient to describe the plate bending in this
scenario, which is supported by fact that the neglected membrane stresses are highest
near the center of the plate, as was seen for example in Figure 4.

Figure 6 shows the re-solved loading using the FVK equation 25. The results match
well the constant pressure value also at the center of the plate. The contact areas still
exhibit behaviour not explained by the plate model.

The validity of equation 19 was also tested. The membrane stresses were differentiated,
and the left and right sides of the equation were evaluated at the simulation data points
and compared. The results of this comparison are shown in Figure 7. The equation 19
tends to be very accurate (in nodes) sufficiently far away from the contact.

Reverse-method for solving the plate’s bending stiffnesses

The reverse-method for calculating the plate’s bending stiffnesses, Dx, Dy and H, based
on the FE-simulated deflection data was tested. We assumed that the deflection field w
and external load q are known and that the different plate equations, 21 and 25, solve for
the bending stiffnesses. In the case of FVK-equation, the stress fields were also assumed
known.

The deflection was obtained from the FE simulated data and the (constant) external
load from FE-model input. With these assumptions, we have a linear systems of equations
where the unknowns are the plate’s bending stiffnesses and each data point (i.e., each node
in the plate’s mid-surface) provides an equation. The domain in which we evaluate w and
q determines the number of equations. We used both circular and ring-shaped domains
with the same center point as in the hole. For this area, or domain, the radii ranged from
0 up to the radius of the hole. Examples of these are depicted in Figure 8. The plate’s
bending stiffnesses are then solved from the linear system of equations with least squares.

The solved bending stiffnesses as a function of the circular domain radius as well as the
corresponding ones used in the FE-model are shown in Figure 9. The Kirchhoff equation
fails to calculate the correct values using this method. However, the larger the domain
radius, the closer to the actual values the calculated parameters are. This agrees with
the fact that the Kirchhoff plate equation is more accurate far from the center of the
plate as was seen in Figure 5. The effect can be alleviated using ring-shaped domains for
the collection of FE-data as in Figure 10. Here, the data from the center of the plate is
omitted for the outer domains, hence even the Kirchhoff equation is able to solve for the
plate’s bending stiffnesses. The FVK plate model solves the parameters more accurately,
although it fails near the exact center as well. Both plate models fail to calculate the
bending stiffnesses if data near the contact (boundary condition) is included.

Discussion

The validity of analytical plate equations of the reverse-method was tested using virtual
paperboard deflection produced via FE-analysis. The scatter of material properties in a
real-life application was omitted this way. In the application, the deflection of the plate
and the external load applied are known at certain accuracy from specialized measure-
ments. In this study, the use of FE-analysis also removed disturbances such as measure-
ment noise and dynamic phenomena. Compared to the FE-modeling scenario, the real
application also includes externally caused stresses in the plane of the plate, i.e. stresses
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(a) The entire plate

(b) Middle of the plate

Figure 5: The external load calculated according to the Kirchhoff plate equation using
FE-model inputs and simulated data.
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(a) The entire plate

(b) Middle of the plate

Figure 6: The external load calculated according to the FVK plate equation using FE-
model inputs and simulated data.
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Figure 7: Quotient of the left and right sides of eq. 19 evaluated at simulated data and
model inputs in the middle of the plate.

(a) Circular (b) Ring-shaped

Figure 8: An example of domains (red) for calculating the plate’s bending stiffnesses
plotted over the simulated plate’s deflection data w.
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(a) Dx (b) Dy

(c) H

Figure 9: Reverse-engineered plate’s bending stiffnesses according to Kirchhoff and FVK
equations using circular domains
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(a) Dx (b) Dy

(c) H

Figure 10: Reverse-engineered plate’s bending stiffnesses according to Kirchhoff and FVK
equations using ring-shaped domains
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that are not due to the suction load at the support plate. Moreover, the sheet in the real
application is not static, but moving axially.

The results show that the FVK plate equation predicts the (FE-simulated) deflection
of the plate accurately. The plate’s bending stiffnesses can also be solved from the FVK
equation with the additional assumption that the stresses are also known a priori. This
is not the case in the real-life application.

Possible hypothesized solutions for future work that approximate the stress fields while
simultaneously solving the plate’s bending stiffnesses include for example solving for the
stress function F from the known deflection w using Navier-type formulation similarly to
Wang [18]. Another approach is to parametrize the stress fields and fit for the required
parameters simultaneously with the plate’s bending stiffnesses.

Most of the calculations of the material parameters used data from the center of the
plate, where the deflections are large and the Kirchhoff equation is not valid. If this
data is rejected, i.e., using only data points collected far from the center and far from
the contact forces, Kirchhoff equation can be used to solve for the material parameter
values at suitable accuracy. This is seen in Figure 10, where the Kirchhoff equation and
FVK equation agree for a certain range of radii. The applicable data usage domain is
much smaller in this case, which may cause problems in the least squares solution of the
resulting system of linear equations when measurement noise, model inaccuracies and
other disturbances are present. Very near or exactly at the edges the plate presumption
(basically the form 11) is not precise and deformation in thickness direction plays a role
(in real w-data). This is seen by the peak values in the calculated load in Figures 5 and 6.
A chamfered edge in the support plate was also tested, but this did not remove the peak
values, but some local smoothing in the values was observed. Moreover, for real materials
(Table 1), νxy = 0.15, but νyx = 0.07 (according to equation (10)), which shows that the
presumed Poisson’s effect in the plane of paperboard should be highly dependent on the
direction of load at the neutral plane.

Conclusions

A FE-model of a novel method for measuring the bending stiffness of paperboard was
created. The FE-simulated data was used to study the validity of the Kirchhoff plate
equation that is currently applied in the reverse-method. It was found that this plate
equation is not sufficient for describing the larger deflections occurring in the FE-model.
The Kirchhoff equation was able to solve for the FE-modeled plate’s bending stiffness
using the reverse-method, but only with input deflection data collected only in regions of
small deflection.

The Föppl–von Kármán plate equation was in close agreement with the results and
inputs of the FE-model, but required the additional knowledge of the membrane stresses
in the mid-surface of the plate. This equation was successfully applied in solving the
plate’s bending stiffness from a broader region of data points than the Kirchhoff equation
using the reverse-method. The relative error in the middle of the plate was 0.5% for the
FVK plate model and 9.8% for the Kirchhoff plate model, when comparing the loads
calculated from the FE-simulated data using the respective plate models with the load
(−1000 Pa) used in the FE-model.
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