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A thermo-mechanical numerical method for 

modelling heating due to frictional sliding 

Timo Saksala 

Summary Heating due to frictional sliding is an important phenomenon in tribological 
applications. The present study develops a numerical method based on the finite elements (FE) 
for modelling frictional sliding induced heating. More specifically, the method is designed for 
applications where the behavior of the tool part of the frictional contact couple is not critical so 
that it can be idealized as a rigid body. The contact between the tool and the target, assuming 
linear elastic material, is modelled with the penalty method. The FE-discretized balance of linear 
momentum is time discretized with the Newmark scheme, and the FE-discretized heat equation 
is time discretized with the backward Euler scheme. The global coupled thermo-mechanical 
problem is solved with a globally iterative staggered approach. The frictional contact model is 
verified against analytical solution of a rotating blade pressed against a plane. Finally, a validation 
simulation of a pin-on-disc tribology test is carried out. 
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Introduction 

Frictional sliding induced heating effects cause concern in tribological applications, such 

as friction clutches and brakes [1,2], machining of metals [3,4,5], and friction stir welding 

[6]. Moreover, substantial local temperature rise may also occur in fretting contact [7], 

but the temperature effects seem to be seldom included in fretting analyses, see e.g. [8]. 

Localized heating may cause alterations in material behavior, such as weakening, and 

even melting of metals in friction clutches and brakes. Therefore, the ability to predict the 

temperature effects by numerical modelling is an important asset in the related fields of 

engineering. This has spurred considerable research efforts focused on developing 

numerical techniques capable of simulating the thermal effects in frictional sliding, as 

exemplified in Refs. [2,5,9–15]. Another tribological application involving frictional 

sliding is abrasive tests, such as the pin-on-disc test and its modifications [16,17]. 

Predictive numerical modelling of these tests facilitates the planning of experiments and 

the design of new testing methods and has thus drawn substantial attention [18–23].  

http://rakenteidenmekaniikka.journal.fi/
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The present study develops a numerical approach to predict the heat generation due 

to frictional sliding. While the works cited above have their merits, the distinct aim of the 

present study is to develop a platform code capable of being extended to simulate heating 

due to frictional sliding in any of the mentioned applications. As most of the above cited 

numerical studies, the present method is also based on the finite element method (FEM). 

In contrast to these studies, the present method is tailored for applications where the 

behaviour of the tool is not at the focus of interest so that it can be modelled as a rigid 

body with virtual geometry. This is many times the case, e.g. in choosing the disc metal 

alloy in friction brake or clutch design. Another application where the tool behaviour can 

be neglected (at certain stages of the design process) by describing the tool as a rigid body 

is the drill bit design, as demonstrated by Saksala [24,25]. Moreover, at this stage of 

development, linear elastic material is assumed while the focus is on the coupled thermo-

mechanical problem with Coulombian frictional contact. The model is finally validated 

by predicting heat generation in a pin-on-disc test. The method was implemented with 

Matlab software. 

Numerical method 

The numerical method for modelling frictional sliding induced heating consists of the 

material model, a tool-base material interaction model, the heat generation model, and 

the thermo-mechanical equation system governing the problem and its solution technique.  

The base material is assumed to be linear elastic so that the small deformation 

assumption applies. The constitutive relation can thus be written as 

 

 

where the symbol meanings are: 𝛔 is the stress tensor; 𝐂e is the elasticity tensor; 𝛆 is the 

total strain tensor; 𝛆θ is the thermal strain; 𝛼 and ∆𝜃 are the thermal expansion coefficient 

and the temperature change; 𝐈 is the second order identity tensor. 

 

Tool-base material interaction model 

As discussed in Introduction, the tool part of the contact pair is modelled as a rigid body 

with virtual geometry. Moreover, the interaction of the tool and the base material is 

modelled by contact mechanics principles [26], as described later. The tool itself is 

represented by a single node, as illustrated in Figure 1 below. The sliding of the tool on 

the base material is modelled as a moving set of boundary (surface) nodes.  

When the node representing the tool moves (slides), possibly translating with velocity 

v0 and/or rotating with angular velocity , on the surface of base material, the set of 

possible contact nodes, marked red in Figure 1, needs to be searched at each time instant. 

From this set, the nodes truly in contact are then detected and consequently included in 

the contact force solution and the assembly of the external (frictional) heat flux vector. 

 

                      𝛔 = 𝐂e: (𝛆 − 𝛆θ)  (1) 

                                          𝛆θ = 𝛼∆𝜃𝐈    (2) 
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Figure 1. Schematics of tool-base material interaction model. 

The viscous damper (dashpot) attached to the tool node absorbs the possible wave effects. 

To absorb the wave, the damper properties are defined by a computational area Ab of the 

tool, the density b, and the bar velocity 𝑐𝑏 = √𝐸𝑏/𝜌𝑏 with Eb being the Young’s modulus 

of the tool material. 

Furthermore, loading, or the weight on bit, is applied on the tool by 𝐹wob, which is 

balanced by the normal contact force 𝐹c. The tool also exerts a friction force, 𝐅𝜇, in the 

direction opposite to the tangential velocity 𝐯tan. The equations of motion for the tool are 

written as 

 

where 𝑚𝑏 is a computational mass for the tool, �̈�b,𝑖 and �̇�b,𝑖 are the acceleration and 

velocity of the tool in i-direction. Moreover, �̈�𝑏,𝑧 and �̇�𝑏,𝑧 are the angular acceleration 

and velocity of the tool, 𝐽𝑏 and 𝐼𝑏 are the computational moment of inertia and polar 

moment, respectively. Furthermore, 𝑐𝑏𝑠 is the shear wave velocity, and 𝑀𝜇 is the moment 

of friction forces 𝐹𝑖
𝜇

 with 𝑟𝑖 being the orthogonal distance of node i (in contact) from the 

rotation center. These equations are to be augmented to the global equation of motion 

described next. However, in practice Equation (6) is not needed as the tool angular 

velocity, �̇�𝑏,𝑧 = 𝜔, is usually given as a boundary condition and the moment can be 

calculated based on the friction forces on the base material.  

            𝑚𝑏�̈�b,𝑧 + 𝑐𝑏𝜌𝑏𝐴𝑏�̇�b,𝑧 = 𝐹𝑤𝑜𝑏 + 𝐹𝑐  (3) 

              𝑚𝑏�̈�b,𝑥 + 𝑐𝑏𝜌𝑏𝐴𝑏�̇�b,𝑥 = 𝐹𝑥
𝜇

  (4) 

              𝑚𝑏�̈�b,𝑦 + 𝑐𝑏𝜌𝑏𝐴𝑏�̇�b,𝑦 = 𝐹𝑦
𝜇

   (5) 

              𝐽𝑏�̈�𝑏,𝑧 + 𝑐𝑏𝑠𝜌𝑏𝐼𝑏�̇�𝑏,𝑧 = 𝑀𝜇,  𝑀𝜇 = ∑𝑖=1
𝑁𝑐 𝐹𝑖

𝜇
𝑟𝑖 (6) 
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The governing coupled thermo-mechanical equations 

The strong or local form of the equations governing the frictional heating can be written 

as [27,28] 

 

 

The symbols in these equations are: 𝜌 and c are the density and the specific heat capacity 

of the material; �̇� is the rate of change of temperature; �̈� is the acceleration vector; b is 

the volume force; q is the heat flux vector related to temperature gradient ∇𝜃 and the 

conductivity k by the Fourier’s law; 𝑄mech expresses the mechanical heat production 

through plastic dissipation and elastic strain rate. These sources of heat are ignored so 

that 𝑄mech ≡ 0 (see the justification in [29]); 𝑞𝜇 is the heat flux density due to frictional 

sliding; 𝜂 is a parameter controlling the fraction of heat going to the base (1 − 𝜂 then goes 

to the tool); 𝜇 is the Coulomb friction coefficient; 𝑝𝑁 is the contact pressure; 𝑣slip is the 

relative tangential velocity between to contacting bodies. It should be noted that only slip 

condition is considered in the present approach. Then, the boundary conditions can be 

expressed as 

 

 

where the notation meanings are as follows: �̂�, �̂� are the prescribed surface traction and 

displacement, defined on their respective parts Γ𝜎 and Γ𝑢 of the boundary Γ; 𝒏Γ is the 

surface normal on Γ𝜎; 𝑔𝑁 = 𝐮bit ∙ 𝐧bit + 𝐮base ∙ 𝐧base is the normal gap function where 

𝐮bit, 𝐧bit  and 𝐮base, 𝐧base are the displacement vectors and the outer normal vectors of 

the bit (tool) and the base material, respectively, on the contact part of the surface Γ𝑐; 𝐭𝑇 

is the (Coulombian) friction traction due to slip or relative tangential velocity 𝐯rtan. In 

order to solve Equations (7) and (8) in time, initial conditions must be defined for 

displacement, velocity, and temperature: 𝐮(𝐱, 0) = 𝐮0(𝐱), �̇�(𝐱, 0) = �̇�0(𝐱), 𝜃(𝐱, 0) =
𝜃0(𝐱). 

 

FE discretized system of equations and its solution 

The finite element discretized version of the equations above can be derived by the 

standard steps using the principle of virtual work [26,27]. When the penalty method is 

used to impose the contact constraints, the equations of motion and thermal balance 

written at time 𝑡 + ∆𝑡 are: 

 

 

 

 

                       𝜌�̈� = ∇ ∙ 𝛔 + 𝐛     (7)                    

 𝜌𝑐�̇� = −∇ ∙ 𝐪 + 𝑄mech + 𝑞𝜇   (8) 

 𝐪 = −𝑘∇𝜃,  𝑞𝜇 = 𝜂𝜇𝑝𝑁𝑣slip (9) 

                        𝛔 ⋅ 𝐧Γ = �̂�  on Γ𝜎  (10) 

                        𝐮 = �̂�  on Γ𝑢   (11) 

                        𝑔𝑁 ≥ 0, 𝑝𝑁 ≤ 0, 𝑔𝑁𝑝𝑁 = 0  on Γ𝑐  (12) 

                         𝐭𝑇 = −𝜇𝑝𝑁
𝐯rtan

‖𝐯rtan‖
  on Γ𝑐  (13) 
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𝐌�̈�𝑡+∆𝑡 + 𝐂�̇�𝑡+∆𝑡 + 𝐊𝐮𝑡+∆𝑡 = 𝐟𝑡+∆𝑡
ext + 𝐊𝑢𝜃(𝛉𝑡+∆𝑡 − 𝛉0) +  

                                                        +𝑝𝐆T(𝐆𝐮𝑡+∆𝑡 − 𝐛) + 𝐟𝜇,𝑡+∆𝑡  (14) 

𝐂𝜃�̇�𝑡+∆𝑡 + (𝐊𝜃 + 𝐊h)𝛉𝑡+∆𝑡 = 𝐟𝜇𝜃,𝑡+∆𝑡(�̇�, 𝐟𝜇)+ 𝐟ℎ,𝑡+∆𝑡  (15)   

 

where M is the mass matrix; C is the damping matrix related to the dashpot in Equation 

(3)–(5); 𝐊 is the stiffness matrix; 𝐂𝜃 is thermal capacity matrix; 𝐊𝜃 is the thermal 

conductivity matrix; 𝐮, �̇� and �̈� are the nodal displacement, velocity and acceleration, 

respectively; 𝛉 and �̇� are the nodal temperature vector and its rate; p is the penalty 

parameter; 𝐆 is the normal contact constraint matrix so that for each contact pair i, 𝐺𝑖𝑗𝑢𝑗 =
𝑔𝑁 is the normal gap; b is the initial distance between all the potential contact nodes on 

the base material and the tool; 𝐊h and 𝐟h are the contributions from boundary convection; 

𝐊𝑢𝜃 is the displacement-temperature coupling matrix arising from the constitutive 

Equation (1); 𝐟ext is the external nodal force vector related to the weight on bit force 𝐹wob 

in Figure 1; 𝐟𝜇𝜃 is the heat source due to frictional sliding; 𝐟𝜇 is the friction force vector. 

These are further defined as follows: 

 

 

In these equations: 𝐀 is the standard finite element assembly operator; 𝑉𝑒 is the volume 

of an element; 𝐴𝑒 is the area of an element facet; 𝑁𝑒 is the number of elements; In (16)2, 

diag means that a diagonal matrix is formed from the argument, and 𝐈bit = [1 1 1]; 𝐁𝑢
𝑒  in 

(17) is the gradient of the interpolation matrix 𝐍𝑒  for the displacement; 𝐍𝜃
e  is the 

temperature interpolation matrix; 𝐁𝜃 is the gradient (matrix) of 𝐍𝜃; In (19), h and 𝜃𝑎 are 

the convection coefficient and the ambient temperature; 𝑁fh is the number of elements 

with a facet on the boundary where the convection BC is defined; In (17)2, 𝛼 is the thermal 

expansion coefficient, and in 𝟏 ⊗ 𝚰𝜃, 1 is the Voigt version of the second order unit tensor 

and 𝚰𝜃 is a special operator which gives the average of the temperature at the nodes of a 

finite element; The friction force vector 𝐟𝜇 in (20) is calculated as a sum for 𝑁conts active 

contact nodes with 𝜇 being the friction coefficient, 𝐹𝑁
𝑛𝑑 the normal contact force for node 

nd, and 𝐯tan,𝑛𝑑 the relative tangential velocity (slip), equivalent to 𝐯rtan in  Equation (13), 

at the same node; 𝑞𝜇 in (21) is the discretized counterpart of (9)2 so that 𝑝𝑁 = �̅�𝑁
𝑒/(3𝐴𝑒𝑓), 

where 𝐴𝑒𝑓 is the area of the finite element face (which count 𝑁fc in total) on the contact 

surface and �̅�𝑁
𝑒 is the sum of the nodal forces over that face; ‖𝐯tan,𝑡+∆𝑡‖ is corresponds to 

𝑣slip in (9)2.  

The equation of motion (14) of the spatially (FE) discretized coupled system is further 

discretized in time by the Newmark scheme [30]:  

 

𝐌 = 𝐀𝑒=1
𝑁el ∫ 𝐍𝑒

T𝐍𝑒 d𝑉
𝑉𝑒

,  𝐂 = 𝑐𝑏𝜌𝑏𝐴𝑏diag([𝐈bit, 𝟎])  (16) 

𝐊 = 𝐀𝑒=1
𝑁𝑒 ∫ 𝐁𝑢

𝑒,T𝐂𝑒𝐁𝑢
𝑒 d𝑉

𝑉𝑒
,  𝐊𝑢𝜃 = 𝐀𝑒=1

𝑁𝑒 ∫ 𝛼𝐁𝑢
𝑒,T𝐂𝑒[𝟏 ⊗ 𝚰𝜃]d𝑉

𝑉𝑒
            (17) 

𝐂𝜃 = 𝐀e=1
𝑁e ∫ 𝜌𝑐𝐍𝜃

e,T𝐍𝜃
ed𝑉,

𝑉e
 𝐊𝜃 = 𝐀e=1

𝑁e ∫ 𝑘𝐁𝜃
e,T𝐁𝜃

ed𝑉
𝑉e

  (18) 

𝐊h = 𝐀e=1
𝑁fh ∫ ℎ𝐍𝜃

e,T𝐍𝜃
ed𝐴

𝐴e
,     𝐟ℎ = 𝐀e=1

𝑁fh ∫ ℎ𝜃𝑎𝐍θ
e,T

𝐴e
d𝐴  (19) 

𝐟𝜇,𝑡+∆𝑡 = − ∑ 𝜇𝐹𝑁
𝑛𝑑 𝐯tan,𝑛𝑑

‖𝐯tan,𝑛𝑑‖

𝑁conts
𝑛𝑑=1     (20) 

𝐟𝜇𝜃,𝑡+∆𝑡 = 𝐀𝑒=1
𝑁fc ∫ 𝑞𝜇,𝑡+∆𝑡𝐍𝜃

𝑒,T
𝐴𝑒

d𝐴,  𝑞𝜇,𝑡+∆𝑡 = 𝜂𝜇�̅�𝑁,𝑡+∆𝑡
𝑒 /(3𝐴𝑒𝑓)‖𝐯tan,𝑡+∆𝑡‖             (21) 
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which is here applied in the unconditionally stable midpoint rule, i.e.  = 1/4,  = 1/2. 

Moreover, the implicit backward Euler scheme is used to convert the rate of change of 

temperature in (15) to its algorithmic counterpart �̇�𝑡+∆𝑡 = (𝛉𝑡+∆𝑡 − 𝛉𝑡)/∆𝑡. Applying 

these schemes to (14) and (15) leads to the algebraic equations for solving the unknown 

fields 𝐮𝑡+∆𝑡 and  𝛉𝑡+∆𝑡. However, while the heat balance equation is linear in the present 

case, the equation of motion is nonlinear due to contact constraints. The staggered 

approach based on the isothermal split [27] is chosen here to solve the coupled system of 

algebraic equations. The effective stiffness matrix for the iterative solution of the equation 

of motion is      

 

 

The iterative (for displacement) staggered algorithm can now be presented as:  

 

It is clear from the structure of this algorithm that the iteration for the new displacement 

field is not in the typical form used with nonlinear equations, which usually involves 

linearization of the nonlinear equation of motion and using its fulfillment in the stopping 

criteria while solving for the displacement increment ∆𝐮 (as in the Newton-Raphson 

method), not the total displacement as here. However, here the equation of motion is 

linear in material behavior, and geometrically linear due to the small deformation 

framework, while the only nonlinearity comes from the contact formulation. Hence, this 

form of iteration solving for the total displacement in Step 3 is justified. It should also be 

noted that new contacts need to be found and the matrix G as well as the heat source 

vector, 𝐟𝜇θ, assembled at each time step. Finally, the linear system in Step 1 is solved with 

the Matlab backslash operation while the larger system in Step 3 is solved with the 

stabilized bi-conjugate gradient method using the incomplete LU-factorization as a 

preconditioner. 

  

 �̇�𝑡+∆𝑡 = �̇�𝑡 + (1 − 𝛾)Δ𝑡�̈�𝑡 + 𝛾Δ𝑡�̈�𝑡+∆𝑡                                                        (22) 

      𝐮𝑡+∆𝑡 = 𝐮𝑡 + Δ𝑡�̇�𝑡 + (
1

2
− 𝛽) Δ𝑡2�̈�𝑡 + 𝛽Δ𝑡2�̈�𝑡+∆𝑡  (23) 

 �̂�tan = 𝐊 + 1

𝛽2𝐌+ 𝛾

𝛽∆𝑡
𝐂 + 𝑝𝐆𝑇𝐆 (24) 

1.  Solve: (𝐂θ + Δ𝑡𝐊θ)𝛉𝑡+Δ𝑡 = 𝐂θ𝛉𝑡 + Δ𝑡𝐟𝜇θ,𝑡+∆𝑡(�̇�𝑡) → 𝛉𝑡+Δ𝑡   

2.  Predict: �̇̃�𝑡+∆𝑡
0 = �̇�𝑡 + (1 − 𝛾)Δ𝑡�̈�𝑡,  �̃�𝑡+∆𝑡

0 = 𝐮𝑡 + Δ𝑡�̇�𝑡 + (
1

2
− 𝛽) Δ𝑡2�̈�𝑡 

Calculations for iteration n: While ∆𝑢𝑟𝑒𝑙 > 𝑇𝑂𝐿  do 

3.  Solve: �̂�tan
𝑛 𝐮𝑡+∆𝑡

𝑛+1 = 𝐟tot
𝑛 (𝛉𝑡+Δ𝑡) → 𝐮𝑡+∆𝑡

𝑛+1   

     𝐟tot
𝑛 =  𝐊𝑢𝜃(𝛉𝑡+∆𝑡 − 𝛉0) + 𝐟𝑡+∆𝑡

ext + 𝑝𝐆T𝐛 + 𝐟𝜇,𝑡+∆𝑡
𝑛 − 𝐂�̇̃�𝑡+∆𝑡

𝑛 + ( 1

𝛽2𝐌 + 𝛾

𝛽∆𝑡
𝐂 ) �̃�𝑡+∆𝑡

𝑛   

4.  Calculate acceleration and update velocity:   

      �̈�𝑡+Δ𝑡
𝑛+1 =

1

𝛽Δ𝑡2 (𝐮𝑡+∆𝑡
𝑛+1 − �̃�𝑡+∆𝑡

𝑛 ),  �̇�𝑡+Δ𝑡
𝑛+1 = �̇̃�𝑡+∆𝑡

𝑛 + 𝛾∆𝑡�̈�𝑡+Δ𝑡
𝑛+1   

5.  Calculate the relative change: ∆𝑢𝑟𝑒𝑙 = ‖𝐮𝑡+∆𝑡
𝑛+1 − �̃�𝑡+∆𝑡

𝑛 ‖/‖�̃�𝑡+∆𝑡
𝑛 ‖.  

     Set �̃�𝑡+∆𝑡
𝑛+1 = 𝐮𝑡+∆𝑡

𝑛+1 , n = n +1 and go to 3. 
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Numerical examples 

The numerical method is now first verified with an analytical solution for the normal 

contact force and friction moment during rotational-frictional sliding. Then the method is 

validated in simulations of heat generation in a pin-on-disc test on a friction material.  

 

Model verification with an analytical solution for friction moment   

Consider a blade (width w, length 2R) pressed with pressure p against a plane 

schematically described in Figure 2. The blade is rotating with a constant angular velocity 

𝜔, and the coefficient of friction between the blade and the plane is 𝜇.  

 

Figure 2. Schematic of a rectangular blade with a length of 2R and width of w rotating with a 

constant angular velocity 𝜔 while pressed against the xy-plane. 

The moment due to friction, 𝑀𝜇, can be solved analytically as follows:  

 

 

where 𝐹𝑁 is the normal force. This solution is now exploited for verification of the present 

method. However, the temperature effects are ignored here, i.e. the frictional heating is 

not considered.  

The application parameters are: R = 4.25 mm;  = 0.4;  = 200 RPM; w = 0.5 mm; 

FN = 196 N. The relevant model parameters are as follows: Young’s modulus E = 30 

GPa; Poisson’s ratio  = 0.2; Material density  = 2400 kg/m3; mb = 0.005 kg; Ab = R2 

= 56.75 mm2; b = 7800 kg/m3; Eb = 210 GPa. Finally, the penalty parameter is set to p = 

1106 – a value found by trial. Moreover, the time step is set so that the blade rotates one 

degree 1 during a single time step. The set of contact nodes is updated at each time step. 

The finite element mesh representing the plane is shown in Figure 3a. It consists of 27257 

linear tetrahedrons (16539 degrees of freedom) with a strong refinement at the contact 

area. An example of simulation results along with the used finite element mesh are shown 

in Figure 3b-d. It should be noted that the blade rotates counterclockwise. 

𝑀𝜇 = ∫
𝐴

𝑑𝑀 = ∫
𝐴

𝜇𝑝𝑟𝑑𝐴 = 2𝜇 𝐹𝑁
2𝑅𝑤

𝑤∫0
𝑅

𝑟𝑑𝑟 = 𝜇𝐹𝑁𝑅/2  (25) 
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Figure 3. Example of simulation results for the rotational-frictional sliding at t = 0.1 s ( = 2.078 

rad): Finite element mesh with 27257 linear tetrahedrons (a); The contact node set (b); The 

predicted normal force and the friction moment as a function of time (c); The stress components 

z and 1 (d). 

The results in Figure 3c show some oscillations in both the normal force and friction 

moment (calculated by Equation (6)2). These are due to the nonstructured (irregular) mesh 

used, which means that the number of contact nodes (see an example in Figure 3b) is not 

the same at each time step when regular blade shape (rectangle) is used. The first principal 

stress field in Figure 3d illustrates the effect of frictional sliding inducing tensile stresses 

behind the trailing edge of the rotating blade.  

 
Table 1. Results of the minimalistic parameter study. 

p FN [N] Rbit  Mteor [Nm] Mmodel [Nm] Avrg. Err. [%] 

1106 196 4.25 0.4 0.1666 0.1697 1.86 

1106 196 2.125 0.4 0.0833 0.0867 4.08 

1106 196 4.25 0.3 0.1250 0.1274 1.92 

1106 98 4.25 0.4 0.0833 0.0849 1.91 

1105 196 4.25 0.4 0.1666 0.1682 0.96 

1107 196 4.25 0.4 0.1666 0.1744 4.68 



32 

 

 

In order to verify the method, a minimalist parameter study was performed by varying 

the terms in the expression for the friction moment in Equation (25) as well as the penalty 

parameter. The results are shown in Table 1. The error is averaged over the simulation of 

half a revolution (180).  

It can be observed in Table 1 that the present method performs with an acceptable 

accuracy in the engineering sense. The errors, reaching 4 %, can be ascribed to the 

modelling errors, e.g. the relatively coarse mesh used. It can be observed in Figure 3b that 

the geometry of the contact node set deviates from the one used to derive the theoretical 

formula for the friction moment in Equation (25), which does not have the blade thickness 

w. Moreover, the predicted friction moment is calculated by Eq. (6), i.e. 𝑀𝜇 = ∑𝑖=1
𝑁𝑐 𝐹𝑖

𝜇
𝑟𝑖, 

where Nc is the number of contacts. Better accuracy would probably be obtained by a 

finer mesh or for a different geometry. Finally, the method is not overly sensitive to the 

value of the penalty parameter, as can be seen in Table 1. 

 

Model validation against experimental results from a pin-on-disc test   

The full model, including the thermal part, is now validated against experimental results 

from a pin-on-disc test reported by Abdullah and Schlattmann [18]. In this test, a steel pin 

is pressed against a friction disc, which rotates at constant angular velocity , being 150 

rad/s in the present case.  

 

Figure 4. Example of simulation results for the pin-on-disc test at t = 15 s: The schematic for the 

test (a); The finite element mesh with 80604 linear tetrahedrons (b); The predicted stress 

component z (c); The predicted temperature distribution (d). 
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However, in the present modelling approach, the disc is fixed while the node representing 

the pin moves in the circular trajectory (dashed line) shown in Figure 4a, presenting the 

schematic principle of the test and the dimensions. The material properties of the friction 

disc used in the simulation are: Coefficient of friction  = 0.3; Young’s modulus E = 300 

MPa; Poisson’s ratio  = 0.25; Material density  = 1800 kg/m3; Thermal expansion 

coefficient  = 1210-6 1/K; Specific heat c = 1000 J/kgK; Thermal conductivity k = 0.65 

W/mK. Moreover, the parameter controlling the fraction of heat going to the pin 

(Equation (9)), 𝜂, is set to 0.5, while the penalty coefficient is set to p = 1106. 

Furthermore, the pressure applied to the pin is p = 0.2 MPa, while the model parameters 

of the pin are the same as in the above simulations. A convection boundary condition is 

applied at the top of the disc with the convection coefficient and the ambient temperature 

being h = 10 W/m2K and a = 293 K. Finally, the time step is the same as in the above 

simulations. Figure 4b shows the finite element mesh consisting of 80604 linear 

tetrahedrons (66969 degrees of freedom), and an example of the axial stress component 

z and the temperature distribution at the end of 15 s simulation are shown in Figure 4c 

and d. 

The temperature reaches 65 C at some nodes on the disc surface after 15 s of rotation. 

The comparison to the experimental values at 8, 11, and 15 s is shown in Table 2. It should 

be mentioned that much higher temperatures (170.6 C at 15 s) were observed in the steel 

pin during the experiment [18]. The values in the Table are average temperatures 

calculated from the data at four locations (x = 81.5 mm, y = 0; x = 0, y = 81.5 mm; x = -

81.5 mm, y = 0; x = 0, y = –81.5 mm). Moreover, as the interest of the authors [18] was 

in the behavior of the pin, they didn’t report the exact temperatures on the surface of the 

friction disc. For present purposes, these were determined from the infrared camera 

snapshots [18] by image manipulation tools in Matlab.   

 
Table 2. Model predictions vs. experiments for temperature in the pin-on-disc test. 

avrg [C]/Time 8 s 11 s 15 s 

Experiment 41 47 63 

Prediction 43 48 53 

Error [%] 4.9 2.1 –15.8 

 

The predicted values differ from the experimental ones with a trend that the at 8 s, the 

model overshoots the experiment by 4.9 %, but at 15 s underestimation by 15.8 % occurs. 

The match could possibly be improved by altering some model parameters. However, the 

agreement is, taking the simplicity of the model into account, acceptable from the 

engineering point of view. Finally, a note on the convergence of the method is in order. 

Namely, the relative change of displacement, ∆𝑢𝑟𝑒𝑙, converged to the set tolerance of 

0.001 typically with 5 steps and was very robust. 
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Conclusions 

A numerical method for predicting heating due to frictional sliding was developed in this 

paper. The method was specifically designed for applications where the behavior of the 

tool part of the contact pair is not at the focus of interest so that it can be modelled as a 

rigid body. The finite element discretized coupled thermo-mechanical system was solved 

with a globally iterative staggered method based on the isothermal split. The frictional 

contact constraints were handled with the penalty method. As the linear elastic material 

model and small deformations were assumed, the only nonlinearity in the model comes 

from the contact constraints.  

Thereby, an unconventional iterative solution method was developed for solving the 

equation of motion discretized in time by the implicit Newmark scheme. In this method, 

total displacement is solved, as usually with linear equations, instead of the displacement 

increment, as usually with nonlinear equations. Nevertheless, this approach appeared to 

be robust and converging relatively fast. Moreover, the present approach predicted the 

contact force and friction moment generated by a rotating blade with an acceptable 

accuracy. It also predicted the heating due to frictional sliding in a pin-on-disc test with 

an engineering-acceptable manner. Therefore, it is concluded that the method is verified 

(against analytical results) and validated (against experiments).  

As such, the method provides a platform for future developments and extensions. For 

example, nonlinear material models with damage and plasticity can be easily included, 

after changing the present iterative method to the Newton-Raphson method. Moreover, 

temperature dependence of the material should be included, especially in applications 

with intensive heating (friction brakes and clutches). Furthermore, more advanced friction 

models can be considered when necessary. Finally, even when the tool is modelled as a 

rigid body, its wear can be accounted for if an empirical wear relation for the tool shape 

exists, e.g., for blunting of a sharp cutter.   
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