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A recursion formula for the integer power of a symmetric
second-order tensor and its application to computational
plasticity

Reijo Kouhia1 and Timo Saksala

Summary. In this paper, a recursion formula is given for the integer power of a second-order
tensor in 3D Euclidean space. It can be used in constitutive modelling for approximating
failure or yield surfaces with corners and it is demonstrated for the case of Rankine failure
criterion. Removing corners provides clear advantages in computational plasticity. We discuss
the consequences of the approximation errors for failure analyses of brittle and quasi-brittle
materials.
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Introduction

In computational plasticity yield surface corners produce non-uniqueness in the plastic
flow direction if associative flow rule is applied. Koiter built a theoretical framework for
corner plasticity [6, 7, 10]. In computational framework it has resulted in numerous studies
and also many approaximate expressions for multi-surface yield surfaces with corners
have been presented, see e.g. [1, 2, 12, 13, 14]. Similar problem arises in continuum
damage mechanics, especially when it is formulated in terms of the maximum principal
stress, like in the classic Rankine failure criterion, which is linear in the principal stress
space but non-linear in the global stress space [3]. Approximation of such yield/failure
surfaces with a continuous function written in terms of the stress invariants offers clear
advantages since it does not involve solution of the principal stresses and coordinate
transformations. Moreover, the consistent linearization needed in the implicit integration
schemes is straightforward.
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Scalar invariants of a second order symmetric tensor

The characteristic equation for the solution of the eigenvalues λ of a symmetric second-
order tensor A in a three-dimensional Euclidean space is

− λ3 + I1λ
2 + I2λ+ I3 = 0, (1)

where the principal scalar invariants Ii, i = 1, 2, 3 of the tensor A are defined as

I1 = trA = Aii, (2)

I2 = 1
2

[
tr(A2)− (trA)2

]
= 1

2
(AijAji − AiiAjj), (3)

I3 = detA = εijkA1iA2jA3k, (4)

where εijk is the permutation tensor and standard index notation is used. If the eigenvalues
of A are denoted as λ1, λ2 and λ3, the scalar invariants (2)–(3) can be expressed as

I1 = λ1 + λ2 + λ3, (5)

I2 = −λ1λ2 − λ2λ3 − λ3λ1, (6)

I3 = λ1λ2λ3. (7)

It should be noted that the definition of the scalar invariants of a tensor is not unique.
In the literature, often the quadratic principal invariant is defined as the opposite sign,
see e.g. [4, 9]. However, the authors prefer to express the invariants of a tensor and
its deviator, which is extensively used in the plasticity theory, in a similar way. This
convention is also adopted by Lubliner [8]. Further elaboration of the tensor invariants
and characteristic equation can be found in [15, Sect. 8].

The well-known Cayley-Hamilton equation states that a tensor itself satisfies its char-
acteristic equation

A3 = I1A
2 + I2A + I3I, (8)

where I is the second order identity tensor. From (8) it can be easily deduced that the
cubic invariant I3 can also be expressed as

I3 = detA = 1
3

tr(A3)− 1
2

trA tr(A2) + 1
6
(trA)3. (9)

The recursion formula

To compute higher than third order powers of a tensor in 3D Euclidean space the following
recursion formula can be proven. If n is a positive integer, n ≥ 1, the power A3+n can be
computed as

A3+n = a
(n)
1 A2 + a

(n)
2 A + a

(n)
3 I, (10)

where the coefficients a
(n)
i , i = 1, 2, 3 are given by the recursion formulas

a
(n)
1 = I1a

(n−1)
1 + a

(n−1)
2 , (11)

a
(n)
2 = I2a

(n−1)
1 + a

(n−1)
3 , (12)

a
(n)
3 = I3a

(n−1)
1 , (13)

with the initial values
a
(0)
1 = I1, a

(0)
2 = I2, a

(0)
3 = I3. (14)
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Proof

A proof for the above formula is given by mathematical induction.
1. The equation (10) is true for n = 0, i.e.

A3 = a
(0)
1 A2 + a

(0)
2 A + a

(0)
3 I = I1A

2 + I2A + I3I,

which is the Cayley-Hamilton equation (8).
2. Assume that the equation holds for n = k. Then it has to be proved that it holds

also for n = k + 1.

A3+k+1 = a
(k+1)
1 A2 + a

(k+1)
2 A + a

(k+1)
3 I

= (I1a
(k−1)
1 + a

(k−1)
2 )A2 + (I2a

(k−1)
1 + a

(k−1)
3 )A + I3a

(k)
1 I

= a
(k)
1 (I1A

2 + I2A + I3I) + a
(k)
2 A2 + a

(k)
3 A

= a
(k)
1 A3 + a

(k)
2 A2 + a

(k)
3 A

= (a
(k)
1 A2 + a

(k)
2 A + a

(k)
3 I)A

=A3+kA = A3+k+1.

It should be noted that A and its powers are coaxial, i.e. they have same eigenvectors,
thus the product AmA is commutative, i.e. AmA = AAm.

An alternative derivation of the recurrence scheme can be found in [5, Section 7.5].

Some comments

It is clear that the above recursion formulas are valid also for a deviatoric tensor too. In
such a case the linear invariant I1 is identically zero in equations (11)–(13).

Constitutive models for isotropic solids are often expressed in terms of invariants I1, J2
and J3 or I1, J2 and θ, where J2 and J3 are the quadratic and cubic invariants of the
deviatoric tensor

devA = A− 1
3
I1I, (15)

and θ is the Lode angle, which in the deviatoric plane can be determined from equation

cos 3θ =
3
√

3

2

J3

J
3/2
2

, where J2 =
1

2
tr(devA), J3 = det(devA). (16)

For example, in the case of stress tensor, i.e. A = σ, the invariants I1, J2 and θ have
clear physical and geometrical meaning: I1 is related to the mean stress σm = 1

3
I1 and

also related to the length ξ = |ON | =
√

3σm on the hydrostatic axis, J2 to the magnitude
of the deviatoric stress ρ =

√
2J2 and θ gives the orientation on the deviatoric plane,

see figure 1b. The coordinates ξ, ρ and θ are called the Haigh-Westergaard stress space
coordinates.

Naturally, the invariants I2 and I3 can be expressed in terms of invariants I1, J2 and
J3 as

I2 = J2 − 1
3
I21 , I3 = J3 − 1

3
I1J2 + 1

27
I31 . (17)

Many times it is convenient to express invariants I1 and J2 in terms of mean stress
σm = 1

3
I1 and effective stress σe =

√
3J2. With these definitions, expressions (17) can be

written as
I2 = 1

3
σ2
e − 3σ2

m, I3 = J3 − 1
3
σmσ

2
e + σ3

m. (18)
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Figure 1. (a) Principal stress space. (b) Deviatoric plane. The projections of the principal stress axes
are shown with dashed line.

Taking (16) into account the third stress invariant has the form

I3 = 2
27
σ3
e cos 3θ − 1

3
σmσ

2
e + σ3

m. (19)

Examples

As an illustration, some first higher order powers are given. The powers A4,A5 and A6

are

A4 = a
(1)
1 A2 + a

(1)
2 A + a

(1)
3 I

= (I21 + I2)A
2 + (I1I2 + I3)A + I1I3I, (20)

A5 = a
(2)
1 A2 + a

(2)
2 A + a

(2)
3 I

= (I1a
(1)
1 + a

(1)
2 )A2 + (I2a

(1)
1 + a

(1)
3 )A + I3a

(1)
1 I

= (I31 + 2I1I2 + I3)A
2 + (I22 + I21I2 + I1I3)A + (I21 + I2)I3I, (21)

A6 = a
(3)
1 A2 + a

(3)
2 A + a

(3)
3 I

= (I1a
(2)
1 + a

(2)
2 )A2 + (I2a

(2)
1 + a

(2)
3 )A + I3a

(2)
1 I

= (I41 + 3I21I2 + I22 + 2I1I3)A
2 +

[
(I31 + 2I1I2 + I3)I2 + (I21 + I2)I3

]
A+

+ (I31 + 2I1I2 + I3)I3I. (22)

Application

Applications for higher-order powers of a tensor can be found in constitutive models to
round corners in yield and/or failure surfaces. A simple example is a Rankine-type failure
criterion, which is based on the hypothesis of maximum principal stress. It is assumed
that material fails in tension if the maximum principal stress exceeds the uniaxial tensile
stress σt and in compression, if the absolute value of minimum principal stress exceeds the
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uniaxial compressive strength σc. Such a failure surface is a cube in the principal stress
space. Rankine-type cut-off approach can be used in combination to other yield/failure
surfaces too, one commonly used variant is the Mohr-Coulomb criterion with tension
cut-off.

Denoting the stress tensor as σ, the Rankine-type failure surface has the form

f(σ) = (max(σ1, σ2, σ3)− σt)(min(σ1, σ2, σ3) + σc) = 0, (23)

where σi, i = 1, 2, 3 are the principal stresses. An approximation of the Rankine type
failure surface f is written as

fn(σ) = tr(σ − αI)n − βn = 0. (24)

If the power n is even, the parameters α and β can be solved in terms of the tensile and
compressive stresses from equations

α = 1
2
(σt − σc), βn = 2

[
1
2
(σt − σc)

]n
+
[
1
2
(σt + σc)

]n
. (25)

The expressions of (24) in terms of the principal invariants for specific values n = 2, 4
and 6 are given below:

f2(I1, I2) = I21 + 2I2 − 2αI1 + 3α2 − β2 = 0, (26)

f4(I1, I2, I3) = I41 + 4I21I2 + 2I22 − 4α(I31 + 3I1I2 + 3I3)+ (27)

+ 6α2(I21 + 2I2)− 4α3I1 + 3α4 − β4 = 0, (28)

f6(I1, I2, I3) = I61 + 6I41I2 + 6I31I3 + 9I21I
2
2 + 12I1I2I3 + 2I32 + 3I23+

− 6α(I51 + 5I31I2 + 5I21I3 + 5I1I
2
2 + 5I2I3)+

+ 15α2(I41 + 4I21I2 + 4I1I3 + 2I22 )+

− 20α3(I31 + 3I1I2 + 3I3)+

+ 15α4(I21 + 2I2)− 6α5I1 + 3α6 − β6 = 0. (29)

Notice that the failure surface f2 do not depend on the third invariant I3 which means
that it is circular in the deviatoric plane. In terms of the mean and effective stress and
the Lode angle θ, see (17) and (19), failure surfaces (26) and (27) take the form

f2(σm, σe) = 2
3
σ2
e + 3σ2

m − 6ασm + 3α2 − β2, (30)

f4(σm, σe, cos(3θ)) = 3σ4
m + 4σ2

mσ
2
e + 2

9
σ4
e − 4α(3σ3

m + 2σmσ
2
e ) + 6α2(3σ2

m + 2
3
σ2
e )+

− 12α3σm + 8
9
(σm − α)σ3

e cos(3θ) + 3α4 − β4. (31)

It is illustrative to show the locus of failure surface in the meridian plane, the com-
pressive meridians of the Rankine failure surface (23) and the approximations (30) and
(31) are shown in figure 2a.

The failure surface (24) has a simple appearance in the principal stress space

fn(σ1, σ2, σ3) = (σ1 − α)n + (σ2 − α)n + (σ3 − α)n − βn = 0. (32)

In the case of plane stress, the failure surfaces have the following forms in the principal
stress space:

f2 =σ2
1 + σ2

2 − 2α(σ1 + σ2) + 3α2 − β2 = 0, (33)

f4 =σ4
1 + σ4

2 − 4α(σ3
1 + σ3

2) + 6α2(σ2
1 + σ2

2)− 4α3(σ1 + σ2) + 3α4 − β4 = 0, (34)

f6 =σ6
1 + σ6

2 − 6α(σ5
1 + σ5

2) + 15α2(σ4
1 + σ4

2)− 20α3(σ3
1 + σ3

2)+

+ 15α4(σ2
1 + σ2

2)− 6α5(σ1 + σ2) + 3α6 − β6 = 0. (35)
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(a) (b)

Figure 2. (a) Compressive meridians for Rankine type failure criterion and approximations f2, f4 and f6.
(b) Plane stress case (thin black line) and its approximation as in Eq. (24) in plane stress for f4 (thick
red line) and f6 (thick blue line). In both figures σc = 5σt.

In figure 2b approximations (34) and (35) are shown together with the Rankine criterion
(23).

Relative errors in the corner stress value σ1 = σ2 = σ∗ > 0 of the approximate Rankine
criterion (32) are shown in figure 3. In figure 3a, the reference is the size of the failure
surface, i.e. σt + σc, while in the 3b the reference is made wrt the tensile strength σt.

In computational failure analysis the direction of the damaged plane is often more
important than the error in the tensile failure stress. Figure 4 shows the error in the normal
direction of the approximate Rankine criterion (32) as a function of the ratio between
tensile and compressive strengths for different n-values for uniaxial tensile loading. If the
tensile to compressive strength ratio is of the order 0.1 (a typical value for concrete and
some rocks), rather high values of the power n is required to keep the error in the fracture
direction lower than e.g. 2◦. A more detailed discussion and computational results are
presented in a companion paper [11].

Concluding remarks

A recursion formula is given for the integer power of a second-order tensor in 3D Euclidean
space. Its use is demonstrated in constitutive modelling for approximating failure or yield
surfaces with corners. The Rankine failure criterion serve as an example. Use of the
approximate form has the advantage that the eigenvalue problem to obtain the principal
stresses need not to be solved. Errors in the corner stress values and the flow direction in
the case of the associated flow rule are numerically studied.
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(a) (b)

Figure 3. Relative error in the corner stress σ∗ value for different values of n of the approximate Rankine
criterion (32).

Figure 4. Error in the direction of failure surface normal in the uniaxial tensile stress case for different
values of n of the approximate Rankine criterion (32).
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