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A damage-plasticity model for brittle materials 

based on a smooth approximation of Rankine type 

of failure criterion  
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Summary  A damage-plasticity model for tensile failure analyses of brittle materials is 
developed. The stress states leading to a failure (inelastic strains and damage) are indicated by a 
rounded approximation of the Rankine criterion. This approximation is expressed in terms of the 
stress invariants avoiding thus the need of coordinate transformations and eigenvalue solutions 
required by the classical Rankine criterion. The model is formulated with the effective stress space 
approach, i.e., the return mapping is first performed in the global effective stress space and then 
the damage update is performed independently of the plasticity part. The model is consistently 
linearized, and, finally, some demonstrative simulations of a tensile test on a rock-like material 
are carried out.   
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Introduction 

The Rankine, or the maximum principal stress, criterion is probably the most widely used 

tensile failure criterion for brittle materials. It assumes that failure occurs when the 

maximum principal stress at a point reaches the tensile strength of the material [1]. As it 

ignores the effect of the other two principal stresses, it is realistic only for brittle materials 

(rocks, soil, concrete, cast iron etc. [2]) in uni- or multiaxial tension.  

In computational plasticity analyses of rocks and concrete, the Rankine criterion is 

often used as a tension cut-off surface for shear failure criteria, such as the Mohr-Coulomb 
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and Drucker-Prager, to mend their incorrect prediction of the tensile strength and failure 

modes [3–6]. These bi-surface plasticity models usually result in discontinuity of the yield 

direction at the intersection of the yield surfaces [4]. The return mapping in such case of 

corner plasticity is naturally more involved, as the return direction is not unique [4,7,8]. 

A way to circumvent the non-smooth intersection between the different yield surfaces is 

to formulate a single surface approximation, as done in [9], which presents a smooth and 

convex yield surface for concrete under both tension and compression. This, however, 

comes at the cost of more complicated mathematical expression of the yield criterion. 

Another aspect of implementation is that the Rankine criterion has a simple linear 

form (𝜎1 − 𝜎t, where the first and second term are the maximum principal stress and the 

tensile strength, respectively) only in the principal stress space while its expression in the 

global stress space is nonlinear [10]. This means, on one hand, that the closed form return 

mapping is lost and the numerical implementation is more complicated as iteration and 

coordinate transformations are needed. On the other hand, the solution of the eigenvalue 

problem is not needed if the Rankine criterion is expressed in the Haigh-Westergaard 

coordinates.   

In light of the discussion above, there are advantages and disadvantages in both the 

principal and the global stress space formulations. Despite this, the avenue pursued in this 

paper is to employ a single surface rounded approximation to the original Rankine cube. 

The properties of the approximation, based on an integer power of the trace of the 

modified stress tensor, are more thoroughly discussed in a companion paper [11]. Based 

on this criterion, which can also be expressed in terms of stress invariants, a damage- 

plasticity model for tensile failure of brittle materials is developed. The model 

development is motivated by the advantages, which overweigh the disadvantages, of 

using such an approximation. Namely, the approximation avoids the need to solve the 

eigen problem and to use the coordinate transformation, as well as has a simple tensorial 

form in the global stress space.  

In the present model, the plasticity part of the model accounts for the inelastic strains 

and the damage part with a single scalar damage variable describes the degradation of 

strength and stiffness of a brittle material under tensile loading. The model is consistently 

linearized and demonstrated in representative numerical examples.    

Numerical model 

Plasticity model for tensile failure of brittle materials 

We assume that the readers are familiar with the fundamentals of computational plasticity 

(if this is not the case, see [7, 10]). Thereby, we proceed to define the specific model dealt 

with in this paper within the small deformation framework enabling the additive 

decomposition of the total strain into elastic and plastic parts. A perfectly plastic 

behaviour, preceded by a linear elastic initial stage, is assumed for the material. Therefore, 

as the damage part of the model describes the degradation of the stiffness and strength, 

separate softening law is not needed. The plasticity model consisting of the tensile yield 

criterion approximating the Rankine cube augmented to include compression failure with 

its gradient (with respect to stress), the flow rule, and the loading-unloading conditions is 

then written as  
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𝜕𝑓𝑛(�̅�)

𝜕𝛔
= 𝑛(�̅� − 𝛼𝐈)𝑛−1  (2) 

                          �̇�p = �̇�
𝜕𝑓𝑛(�̅�)

𝜕𝛔
  (3) 

                          𝑓𝑛 ≤ 0, �̇� ≥ 0, 𝑓𝑛 �̇� = 0  (4) 

 

where symbol meanings are as follows: �̅� is the effective stress tensor (see (9)); �̇�p is the 

rate of the plastic strain 𝛆p; �̇� is the rate of the plastic multiplier 𝜆, 𝐈 is the second order 

identity tensor, and for even powers 𝑛, coefficients 𝛼 and 𝛽 can be expressed in terms of 

the uniaxial compressive strength-like parameter (𝜎ca, while the material compressive 

strength is 𝜎c) and tensile strength (𝜎t) as   

 

 

Figure 1a illustrates the Rankine yield surface and the rounded approximation in 2D case 

with n = 4 and n = 6. It should be noted that the approximation approaches the Rankine 

yield surface when 𝑛 → ∞. The approximation error is further discussed in the companion 

paper [11]. Moreover, the elasticity parameters 𝜎t and 𝜎ca are independent of the integer 

power n. This can be seen in Figure 1a, where the approximations cut intersect the 

principal stress axes at the same values (i.e., at 𝜎t and 𝜎ac). It is also remarked that a 

recursion formula to express the yield criterion (1) in terms of stress tensor invariants can 

be proven [11] for general case n. For example, in case n = 4 the approximation has the 

following invariant form  

 

 

where 𝐼1 = tr(𝛔 − 𝛼𝐈), 𝐼2 =
1

2
(tr(𝛔 − 𝛼𝐈)2 − (tr(𝛔 − 𝛼𝐈))2), and 𝐼3 = det⁡(𝛔 − 𝛼𝐈). 

This expression is, however, only of theoretical interest, as form (1) is substantially more 

economical from the computational point of view. Finally, the original Rankine criterion 

considered only tensile failure, but the present modification also includes the compressive 

strength. Clearly, when 𝜎ca = 𝜎t  𝛼 ≡ 0, and thus the influence of the compressive 

strength disappears. However, there is an implementation reason to include the 

compressive strength described graphically in Figure 1b showing the Rankine criterion 

and examples of the present smooth approximation as cut-off to the Mohr-Coulomb (MC) 

shear criterion in 2D. When the compressive strength parameter of the approximation 

equals the tensile strength of the material, i.e., 𝜎ca = 𝜎t, it may happen with realistic 

values of material compressive strength (𝜎c) and internal friction angle of the material 

that the approximation does not intersect the MC cone, as illustrated in Figure 1b. In such 

a case, the stress return mapping cannot be uniquely defined as the tensile cut-off criterion 

is inside the shear cone. This problem disappears when 𝜎ca > 𝜎t and the criteria intersect, 

as illustrated in Figure 1b.         

For brittle materials, the macrofailure plane in uniaxial tension is perpendicular to the 

axis of loading [2]. When modelling uniaxial tension with the plasticity approach, this 

 𝑓𝑛(�̅�) = tr((�̅� − 𝛼𝐈)𝑛) − 𝛽𝑛 (1) 

                          𝛼 = 1

2
(𝜎t − 𝜎ca), 𝛽

𝑛 = 2(1
2
(𝜎t − 𝜎ca))

𝑛

+ (1
2
(𝜎t + 𝜎ca))

𝑛

 (5) 

                          𝑓4(𝐼1, 𝐼2, 𝐼3) = 𝐼1
4 + 4𝐼1

2𝐼2 + 2𝐼2
2 − 4𝛼(𝐼1

3 + 3𝐼1𝐼2 + 3𝐼3) + 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+6𝛼2(𝐼1
2 + 2𝐼2) − 4𝛼3𝐼1 + 3𝛼4 − 𝛽4 (6) 
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means that the yield direction, representing the crack opening, should be perpendicular to 

the macrofailure plane, i.e., parallel to the loading axis. As the gradient of the yield surface 

is the yield direction in the associated plasticity, the values of the coefficients in (5) call 

some attention.  

 

Figure 1. Rankine type failure criterion (thin black line) and its approximation in plane stress for 

n = 4 (red line) and 6 (blue line) with 𝜎ca = 5𝜎t (a); The Rankine failure criterion as a tensile cut 

off for the Mohr-Coulomb criterion and the approximation in plane case (b). 

Consider uniaxial tension with 𝜎𝑥 = 𝜎t and the rest of the stress components are zero. 

Then, with 𝜎ca = 10𝜎t (typical ratio for concrete and rock), Equation (5) gives 𝛼 =
−9 2⁄ 𝜎t. Now, by Equation (2) the yield direction, in Voigt notation, becomes 

𝑛𝜎t/2[11⁡9⁡9⁡0⁡0⁡0]
𝑛−1, which with small n, being almost hydrostatic dilatation, is not 

correct. The correct yield direction, having only the component in x-direction nonzero, is 

obtained when 𝛼 = 0, i.e., when 𝜎ca = 𝜎t or, alternatively, when 𝑛 → ∞. While this is 

not correct for any brittle material, it can be used for geomaterials since the 

compressive/shear behaviour for these materials is modelled by a separate shear yield 

criterion, as discussed above. Therefore, we proceed with this setting. 

 

Scalar damage model for tensile failure of brittle materials 

A scalar damage model is chosen for simplicity. If the reader is unfamiliar with the 

concepts of damage mechanics, Ref. [2] is recommended. A scalar damage model with 

an exponential softening function (i.e., the integrated form of damage evolution law �̇� =
𝑓(𝜔, 𝛆, 𝛆p , … )) driven by plastic strain, the equivalent plastic strain (𝜀eqvt

p
), the nominal-

effective stress relation, and the constitutive law are written as  

                      
  𝜔t(𝜀eqvt

p
) = 𝑔t(𝜀eqvt

p
) = 𝐴t(1 − exp(−𝛽t𝜀eqvt

p
)) (7) 

                          𝜀ėqvt

p
= 1

3
〈tr(�̇�p)〉,  𝛽t = 𝜎tℎ𝑒/𝐺Ic (8) 

                          𝝈 = (1 − 𝜔t)�̄� = (1 − 𝜔t)𝐂e: (𝛆 − 𝛆p)  (9) 
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where 𝜔t is the tensile damage variable, 𝐴t and 𝛽t are parameters controlling the 

maximum value of damage and the amount dissipation during the softening process, 

respectively. Parameter 𝛽t is calibrated in (8) by the mode I fracture energy 𝐺Ic and the 

characteristic length of a finite element he, i.e., it is element specific. Moreover, Macaulay 

brackets have been used in the rate form of the equivalent plastic strain in (8). This means 

that damage evolves mainly under tensile type of loading. Finally, 𝐂e is the elastic 

stiffness tensor. It is obvious by (9) that the unilateral conditions – stiffness recovery upon 

stress reversal from tension to compression – of microcracking in mode-I loading is 

neglected in this study.  

It should also be noted that the damage model has no loading function to show which 

stress/strain states lead to damage evolution. This is because the damaging is driven by 

the plastic strain so that when there is plastic straining, there is also damaging. This is 

actually the nominal-effective stress space formulation by Grassl and Jirasek [5], which 

enables separation of the plasticity and damage computations so that, first, the return 

mapping is performed on the effective stress (�̄�) violating the yield criterion. Then the 

damage variable is updated, and the nominal stress is obtained, as indicated in Equation 

(9).  

 

Linearization of the model: tangent stiffness operator   

The stress integration, i.e., the return mapping algorithm, requires a consistent tangent 

operator to retain the quadratic convergence of the Newton-Raphson iteration. With the 

present method, the linearization starts with a perturbation (variation) of Equation (9): 

 

                          𝛿𝛔 = (1 − 𝜔t)𝛿�̄� − 𝛿𝜔t�̄�  (10) 

 

where 𝛿𝜔t can be readily obtained from (7) and (8) as 

                        

𝛿𝜔t =
𝑑𝑔t

𝑑𝜀eqvt
p

𝜕𝜀eqvt
p

𝜕𝛆p
: 𝛿𝛆p = 𝐓d: 𝛿𝛆p (11) 

                        𝐓d =
1

3
𝛽t𝐴t exp(−𝛽t𝜀eqvt

p
) 〈sgn(∆𝛆p)〉𝟏   (𝟏𝑖𝑗 = 𝛿𝑖𝑗) (12) 

 

where 𝑔t is the damage function in (7), ∆𝛆p is the plastic strain increment during the 

return mapping, and 𝛿𝑖𝑗 is the Kronecker delta. Next, the variation of the effective stress 

is derived by first perturbing Equation (3), and then perturbing the constitutive equation 

as well as utilizing the consistency condition 𝑓�̇� = 0: 

 

                          𝛿𝛆p = ∆𝜆
∂2𝑓𝑛

∂�̅�2
: 𝛿�̄� + 𝛿𝜆

∂𝑓𝑛

∂�̅�
 (13) 

                          𝛿�̄� = 𝐂e: (𝛿𝛆 − 𝛿𝛆p)  (14) 

 

With these results in hand, the final form of the tangent operator, 𝐄epd, is, after some 

tensor algebra, written as 

 

                          𝛿𝜆 =
𝜕𝑓𝑛

𝜕�̅�
: 𝐂e: 𝛿𝛆/

𝜕𝑓𝑛

𝜕�̅�
: 𝐂e:

𝜕𝑓𝑛

𝜕�̅�
 (15) 
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                          𝛿𝛔 = 𝐄epd: 𝛿𝛆  with  (16)

                𝐄epd = (1 − 𝜔t)𝐂e − ((1 − 𝜔t)𝐂e + (�̅�⨂𝐓d)) ∙ 𝐂p  (17) 

                          𝐂p = (𝕀 + ∆𝜆
𝜕2𝑓𝑛

𝜕�̅�2
∙ 𝐂e)

−1

(∆𝜆
𝜕2𝑓𝑛

𝜕�̅�2
∙ 𝐂e +

𝜕𝑓𝑛
𝜕�̅�

⊗
𝜕𝑓𝑛
𝜕�̅�

:𝐂e
𝜕𝑓𝑛
𝜕�̅�

:𝐂e:
𝜕𝑓𝑛
𝜕�̅�

) (18) 

 

where 𝕀 is the fourth order identity tensor. The second derivatives, or the Hessian, of the 

yield criterion in the case n = 4, used in the numerical examples, are obtained in 

straightforward manner: 

 

 

Before presenting the numerical simulations, it should be noted that the model has no 

regularization, i.e., it belongs to the class of classical strain (or damage) softening models. 

Consequently, the predicted plastic deformation localizes, upon mesh refinement, to a 

zone with a width of single element, as the underlying partial differential equation loses 

its ellipticity (or hyperbolicity in dynamics).    

Numerical examples 

Single element example: the model prediction in cyclic loading 

The model behavior is demonstrated first at a material point level with a single element 

mesh. The general yield criterion is implemented in case n = 4.  

 

Figure 2. Model response in cyclic loading: Imposed strain (a) and model response (b) when 

𝜎ca = 10𝜎t; Imposed strain (c) and model response (d) when 𝜎ca = 𝜎t. 

                 (
𝜕2𝑓4(�̅�)

𝜕�̅�2
)
𝑎𝑏𝑐𝑑

= 4(𝛿𝑎𝑐𝜉𝑏𝑑
2 + 𝜉𝑎𝑐𝜉𝑏𝑑 + 𝜉𝑎𝑐

2 𝛿𝑏𝑑), 𝜉𝑖𝑗 = ⁡ �̅�𝑖𝑗 − 𝛼𝛿𝑖𝑗 (19) 
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A standard displacement driven load reversal loading is imposed upon one edge of the 

model while the opposite edge is simply supported. The global system of discretized 

system of balance equations is solved with the Newton-Raphson iteration in a fully 

standard manner with a Matlab implementation. Material and model parameters used are 

as follows: Young’s modulus E = 60 GPa; Poisson’s ratio  = 0.25; t = 10 MPa; GIc = 

20 J/m2; At = 0.98. The results of this simulation for two different rations of the strength 

ration are shown in Figure 2. The average stress and strain, used to represent the results 

in all the simulations below, are obtained, respectively, by dividing the sum of the internal 

forces and the displacement at the top edge by the cross-sectional area of the model for 

stress and by the height of the model for strain. 

The model response starts with a tension cycle, which leads to substantial yielding 

and softening by damage with both values of ca. As no stiffness recovery scheme was 

implemented, the consequent compressive cycle takes place with the degraded stiffness 

due to which the correct compressive strength is not reached. More specifically, the 

maximum compressive stress reached, with the loading program in Figure 2a (𝜎ca =
10𝜎t), is 25 MPa. In this case, the compressive cycle clearly results in further damage 

evolution (Figure 2b), while in case 𝜎ca = 𝜎t (Figure 2d) the damage evolution is so slow 

that the response is practically perfectly (ideally) plastic.  

 

2D simulations demonstrating approximation parameter effects 

Representative 2D simulations using bilinear quadrilateral elements are carried out here. 

The model behavior with different values of the approximation parameters is 

demonstrated. The material parameters are: Young’s modulus E = 60 GPa; Poisson’s ratio 

 = 0.25; t = 10 MPa; GIc = 100 J/m2; At = 0.98.  

 

Figure 3. 2D simulation results for uniaxial tension test: Failure modes in terms of tensile damage 

and magnified deformed meshes when n = 4, 𝜎ca = 𝜎t (a); n = 4, 𝜎ca = 5𝜎t (b); n = 2, 𝜎ca = 5𝜎t 
(c); Corresponding average stress-strain curves (c). 
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In order to trigger the localization naturally, the tensile strength of each element is 

randomly perturbed by 10 %. Figure 3 shows the simulation results for uniaxial tension 

for cases n = 4, 𝜎ca = 5𝜎t and 𝜎ca = 𝜎t as well as for n = 2, 𝜎ca = 5𝜎t.  
When n = 4, the same transverse splitting mode is predicted in for both tested values 

of 𝜎ca, as observed in Figure 3a and b. Moreover, the corresponding average stress-strain 

curves in Figure 3d are quite similar. In contrast, the case n = 2, 𝜎ca = 5𝜎t deviates 

substantially from these due to the wrong yield direction, as discussed above. Figure 3c 

demonstrates that the failure mode in this case involves bulging (exaggerated here) of the 

mesh due the hydrostatic plastic strain.   

 

Figure 4. 2D simulation results for uniaxial compression test: Failure modes in terms of equivalent 

plastic strain (a) and magnified deformed meshes (b) when n = 4, 𝜎ca = 5𝜎t; Corresponding 

average stress-strain curve (c). 

The final 2D simulation demonstrates the model behavior in uniaxial compression when 

n = 4 and 𝜎ca = 5𝜎t. As the damage model is meant for tensile damage, see Equation (8), 

the damage evolution is negligible and the model behavior is thus ideally plastic, as 

attested in Figure 4c. The failure mode predicted with this model in uniaxial compression, 

shown in Figure 4a in terms of equivalent plastic strain, is wrong.    

 

3D uniaxial tension test on a laboratory size sample 

Uniaxial tension test is once more carried out in full 3D case. The mesh made of 4475 

trilinear hexahedral elements is used. Case 𝜎ca = 𝜎t for the approximation is applied, 

while the material parameters set as in the 2D simulations above. Again, to trigger the 

localization naturally, the tensile strength of each element is randomly perturbed by 10 

%. The simulation results for three different realization of this random strength scheme 

are shown in Figure 5.  

The predicted failure modes include all the basic types observed in experiments: The 

double (conjugate) crack system (Simu1), the single macrocrack at the support (Simu2), 

and the single macrocrack at the weakest cross section of the sample (Simu3). The 

corresponding average stress-strain curves are almost identical for the cases with a single 

crack but more ductile for the sample failed with the conjugate crack system. This is due 

the fact that more energy is dissipated in this mode. 
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Figure 5. 3D simulation results for uniaxial tension test: Failure modes in terms of tensile damage 

and magnified deformed meshes (a); Corresponding average stress-strain curves (b). 

Conclusions 

A damage-plasticity model for brittle materials in tension based on a rounded (smooth) 

approximation of the Rankine criterion was presented. The rounded approximation, based 

on the trace of the nth power of the modified stress tensor, is written in terms of stress 

invariants so that it can be written in global stress space. It therefore circumvents the need 

to use coordinate transformation formulae and the solution of the eigenvalue problem, 

which both are required by the classical Rankine criterion. However, this comes at the 

cost of nonlinear, yet fairly simple, mathematical form and the loss of the closed form 

return mapping. Moreover, the approximation is rounded so that the flow direction in 

uniaxial tension is not correct with small values of n.  

Despite these shortcomings, it was shown in this paper that a reasonable damage-

plasticity formulation based on this yield criterion is feasible, especially when the damage 

and plasticity parts are separated by the effective stress space formulation. The resulting 

model, using the approximation with n = 4, correctly predicts the failure modes of rocks 

and concrete. Therefore, it could also serve as the tensile cut-off in a more versatile 

models including the compressive/shear failure description.     
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