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Summary  Surface roughness is one of the key surface integrity factors affecting the strength and 
fatigue life of components. Stress concentrations occur due to the randomness of the surface profiles. 
The presence of a dominant valley, a complex geometry and interacting effects exasperate the severity 
of the stress concentrations. To estimate the theoretical stress concentration factor (SCF) at the valley, 
the notch root radius should be estimated carefully. We propose an effective method for estimating the 
root radius of the deepest valley using numerical derivative techniques. The surface roughness of a 
carefully sanded Alumec 89 block was measured using SJ-400 tester. The 1-D roughness data was used 
first to evaluate the root radius of the deepest valleys and then, estimate the SCF using analytical and 
computational methods. We used 2-D finite element (FE) models under uniaxial tension for the 
computational analyses. The validity of our method is based on determining the SCF using different 
theoretical methods and comparing the results to the FE calculations. The theoeritical estimations are 
made using the Neuber, Inglis and Arola-Ramulu approaches, whereas COMSOL Multiphysics is used 
for the FE analyses. Comparing the theoeritical methods with the FE calculations, the Arola-Ramulu 
approach was better, with a maximum of 16.3 % error. The minimum deviations can be explained by 
the model containing parameters such as 𝑅𝑦, 𝑅𝑧 and 𝑅𝑎 which are inherent to the roughness profile of 
the material. 

Keywords: root radius, stress concentration factor, surface roughness, fatigue notch factor 

 

Received: 24 November 2022. Accepted: 3 May 2023. Published online: 12 June 2023.  

Introduction 

The surface integrity of materials is affected by microstructural defects, residual stress and 

surface roughness that stem from the manufacturing processes. The study of surface integrity 

influence on fatigue life of a material is a complex phenomenon due to the coexistence of 

different surface integrity factors [1]. The coexistence affects the fatigue property of materials 

due to the detrimental effect caused to the surface layers. Few studies on machined components 

suggest that the fatigue properties are influenced by the existence of surface roughness and 

microstructural inclusions. For instance, a study by Gao and Li on unpolished 

40CrNi2Si2MoVA steel indicated a 10% decrease of fatigue limit due to surface roughness [2]. 

http://rakenteidenmekaniikka.journal.fi/
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Similarly, intense thermal and rapid machining operations introduce microstructural alterations 

that affect the mechanical, metallurgical and chemical properties [3]. Recent studies show that 

the ISO standard for correlations between surface roughness and fatigue limit does not hold for 

fatigue test results, see e.g., [4], [5]. Based on these studies, the fatigue limit of a rough surface 

has increased beyond the estimations set by the ISO standard of correlations for acceptable 

limits of surface roughness. 

Accurate characterisation of surface roughness contributes to a better understanding of the 

underlying relationship between surface roughness and stress concentration. The randomness 

of the roughness profile results in a complex state of surface stresses which arise from the 

interaction effect [6–8]. Based on the geometries and orientation of the roughness, the stress 

concentration interactions could be detrimental or mitigating. Murakami [8] showed that a 

rough surface generally has higher stress concentrations. However, the extent of influence may 

depend on the depth and width of a pitch between consecutive roughness profiles. Compacted 

pitches usually develop an interacting effect that mitigates stress concentration, whereas wider 

pitches give rise to relatively higher stress concentration [8]. Theoretically, SCF is usually 

evaluated as the stress ratio between the local and nominal ones [9]. The formulation is based 

on the classical linear elasticity theory at macro-scale, hence size-independent. To the contrary, 

the measurement and characterisation of surface roughness is usually at micrometre-scale. 

Therefore, the severity of stress concentration will become additionally size-dependent, see the 

work by Khakalo and J. Niiranen [10] on the gradient-elastic stress analysis of an infinite plate. 

The relationship between fatigue strength and surface roughness has been studied by a number 

of researchers. Majority of the analyses have been conducted using experimental methods. 

There are only few analytical methods on characterizing the stress concentrations of a 

roughness surface. A semi-empirical formulation proposed by Neuber as well as a material 

dependent formulation by Arola and Ramulu are widely used in SCF estimations [11].  

The influence of surface roughness on the fatigue of 7010 aluminium alloy is studied in 

[12]. The severity of surface roughness on creating localized stress concentrations and the 

contributions to crack propagation are studied by modelling filtered 1D roughness profile on 

FE. However, the machined surface profile is shallow, and the filtering process reduces the 

stochasticity that could misrepresent the surface details. Arola D. [13] studied the influences 

of net-shape machining on the surface texture of Fiber Reinforced plastic (FRP). The surface 

textures are further related to the material’s flexural strength via theoeritical SCF calculations. 

Surface topology is characterised by a profile moment that is modelled using superimposed 

micro-cosine shaped functions [14]. The second profile moment is used to estimate the SCF 

analytically and, validated using FE model. Similarly, analytical approach is proposed to 

estimate SCF for a slightly rough surface modelled using superposition of numerous cosine 

function via Fourier series [15]. However, the series of cosine functions again could 

misrepresent the inherent randomness of the real surface profiles. 

Many scholars focus on characterising surface roughness of materials in relation to SCF 

estimations [11–16]. However, most of the works do not consider the local stochasticity of the 

roughness as well as the severity stress concentrations near of dominant valley regions that lead 

to fatigue related failures. Therefore, our objective is to evaluate the notch radius of the deepest 

valleys measured using SJ-400 profilometer. And for the purpose, the surface roughness of the 

high strength aluminium alloy, Alumec 89, is measured at different locations according to ISO 

4287 standard. Based on the calculated notch radii, the SCFs are evaluated theoretically using 

the Neuber, Arola-Ramulu and Inglis approaches. The theoretical findings are compared with 

the results of the FE analyses.  
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Theories of surface roughness and stress concentrations 

Surface roughness  

Surface roughness consists of irregularities that remain on the surface after a material passes 

through certain manufacturing processes [17]. The irregularities affect the performances of 

components in mechanical applications. These irregularities are characterised by peaks and 

valleys of the surface profile. The localized peaks are termed as asperities [18]. The 

manufacturing and machining processes generate surface roughness due to the forming or other 

subtractive operations. The surface roughness scale has a wide range of dimensions from steps 

of 20 mm in traverse to size of interatomic distances of tenths of a micron [17]. The surface 

profiles that are in the scale of microroughness can be random, or repetitive with variety of 

localized peaks and troughs [19]. The irregularities of surface roughness result in complex 

geometry of surface topology that requires detailed assessment to describe the textures and 

thus, their influence on stress concentrations.  

The Surface roughness of materials is characterized by a variety of amplitude and spacing 

parameters [20]. Some of the amplitude parameters include arithmetic mean, 𝑅𝑎, maximum 

height of the profile, 𝑅𝑦, maximum profile depth, 𝑅𝑣 and so forth [21]. Measured from the 

mean line, the arithmetic mean height parameter is  

𝑅𝑎 =
1

𝐿
∫ |𝑧|𝑑𝑥

𝐿

0

.                                                                                                       (1)   

In Eq. (1), 𝑧 is the height of the profile, whereas 𝐿  is the length of the roughness profile 

evaluated. On the other hand, the maximum height of the profile is 

𝑅𝑦 = 𝑅𝑣 + 𝑅𝑝.                                                                                                             (2) 

In Eq. (2), the 𝑅𝑝 is the peak height of the roughness whereas, 𝑅𝑣 is the maximum valley 

measured from the mean line. The ten-point height is average value of the five highest peaks 

and five deepest valleys of the roughness profile. That is 

𝑅𝑧 =  
1

5
[∑(𝑅𝑝𝑖 + 𝑅𝑣𝑖)

5

𝑖=1

].                                                                                         (3) 

Stress concertation factors for rough surface profiles 

Machineries, vehicles, ships and airliners have numerous components which contain stress 

concentrations due to their geometrical nonuniformity. Stress concentration is defined as a 

localized phenomenon of higher stress near geometrical changes which are beyond the nominal 

stress value [9]. Geometrical discontinuities occur in many forms such as surface notches or 

subsurface defects, having a variety of geometric shapes. The discontinuities can reduce the 

fatigue life of materials. The general formula for the theoretical SCF, 𝐾𝑡, is presented as follows 

𝐾𝑡 =
𝜎𝑚𝑎𝑥

𝜎𝑛𝑜𝑚
.                                                                                                                   (4) 

In Eq. (4), 𝜎𝑚𝑎𝑥  is the maximum stress at the geometrical change and, 𝜎𝑛𝑜𝑚 is the nominal 

stress at remote. The theoretical stress concentration in Eq. (4) does not consider geometrical 

entities of the discontinuities. However, the stress distribution around surface notches depends 
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on the radius of curvature which is a geometrical entity. Using elliptical coordinates and 

complex variables analyses, Inglis proposed SCF for an elliptical notch geometry [22]. With a 

major radius, 𝑎, minor radius, b, and notch root radius, 𝜌, Inglis suggested that  

𝑘𝑡 = 1 + 2
𝑎

𝑏
=  1 + 2√

𝑎

𝜌
.                                                                                        (5) 

Eq. (5) is referred to as an equivalent ellipse method where the notches or grooves are 

approximated to an elliptical geometry. However, this method is applicable for shallow profiles 

that can be approximated to an elliptical geometry [16] and, used for isolated surface notch or 

subsurface geometries [9]. To the contrary, surface roughness is inherently random and 

continuous profile. The SCF analyses by Neuber and Arola-Ramulu consider some of the 

surface roughness parameters. The Neuber’s approach is a semi-empirical model that involves 

the ten-point height parameter, 𝑅𝑧, and a notch root radius, 𝜌 [11]. The theoretical SCF 

suggested by Neuber is  

𝑘𝑡 = 1 + 𝑛√𝜆
𝑅𝑧

𝜌
.                                                                                                       (6) 

In Eq. (6),  𝑛 implies the loading mode and 𝜆 is the ratio between the horizontal spacing and 

the asperities. The 𝑛 is valued 1 for shear and 2 for tension loadings. Alternative analytical 

approach is suggested by Arola-Ramulu [11,13] to estimate the SCF of a rough surface profile. 

The method incorporates the use of dominant profile valley and the average valley radius. 

Comparing to Neuber’s, it has the arithmetic mean, 𝑅𝑎, and the maximum height profile 

parameter, 𝑅𝑦 additionally. The effective SCF by Arola-Ramulu is  

�̅�𝑡 = 1 + 𝑛
𝑅𝑎

�̅�

𝑅𝑦

𝑅𝑧
.                                                                                                       (7) 

In Eq. (7) 𝑛 represents the mode of the loading, whereas, �̅� is an effective profile valley radius 

and represents the average radius for dominant profile valleys [11].  

Methods 

Modelling the root radius of the deepest valley profile 

The deep valley regions of the roughness can sometimes be the locations of higher stress 

concertation for in-plane loadings. The expressions given by Eqs. (5)–(7) can be used to 

estimate the SCF theoretically. Some of the terms in these equations can be directly obtained 

from surface roughness measurements except for the notch root radius. Therefore, we propose 

a numerical derivation method to evaluate the notch root radius of the deepest valley. The notch 

root radius 𝜌 is the inverse of the curvature 𝜑 at dominant valley, and is given as 

𝜌 =
1

𝜑
=  

1

1
𝐿 ∫

𝑑2𝑧
𝑑𝑥2

[1 + (
𝑑𝑧
𝑑𝑥

)
2

]

3
2⁄

𝑑𝑥   
𝐿

0

.                                                                      (8) 
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To evaluate the notch root radius, we created 3 equidistant spacings to the left and right sides 

of the deepest valley. Therefore, we obtained a total of 7 z-coordinates between  𝑧−3 and  𝑧+3. 

Then, we evaluated the first and second order derivatives of 𝑧 using the central difference 

numerical derivative techniques. In the numerical differentiation, the Lagrange polynomial 

interpolation is used to perform a first order and second order derivatives of the data points 

given as (𝑥−𝑗, 𝑓(𝑥−𝑗)) , …  (𝑥−1, 𝑓(𝑥−1)), (𝑥0, 𝑓(𝑥0)) … (𝑥𝑘, 𝑓(𝑥𝑘)) [23]. Ignoring the 

truncation error, the first order numerical derivatives at 𝑥0 is given as 

𝑓′(𝑥0) ≈ ∑ 𝑓(𝑥𝑖)ℒ′
𝑛,𝑖

𝑘

𝑖=−𝑗

(𝑥0).                                                                                  (9) 

In Eq. (9), ℒ′
𝑛,𝑖(𝑥0) is the derivative of the Lagrange polynomial at 𝑥0. And 𝑛 represents the 

total points considered, 𝑛 = 𝑗 + 𝑘 + 1. The derivative of the Lagrange polynomial at 𝑥0 is 

ℒ′
𝑛,𝑖(𝑥0) = ∑

1

𝑥𝑖 − 𝑥𝑚
𝑚≠𝑖

∏
𝑥0 − 𝑥𝑛

𝑥𝑖 − 𝑥𝑛
𝑛≠(𝑖,𝑚)

.                                                            (10) 

The second order numerical differentiation of the data points follows a similar process, with 

the approximate derivation at 𝑥0 becoming 

𝑓′′(𝑥0) ≈ ∑ 𝑓(𝑥𝑖)ℒ′′
𝑛,𝑖

𝑘

𝑖=−𝑗

(𝑥0).                                                                             (11) 

In Eq. (11), the second order derivative of the Lagrange polynomial is  

ℒ′′
𝑛,𝑖(𝑥0) = ∑

1

𝑥𝑖 − 𝑥𝑚
∑

1

𝑥𝑖 − 𝑥𝑢
∏

𝑥0 − 𝑥𝑛

𝑥𝑖 − 𝑥𝑛
𝑛≠(𝑖,𝑚,𝑢)𝑢≠(𝑖,𝑚)𝑚≠𝑖

.                           (12)  

In the numerical derivatives, the 𝑥𝑖 are the 𝑥-coordinate data points that define the spacing 

between subsequent height profiles, which are given by 𝑓(𝑥𝑖), see the surface roughness of the 

first measurement in Fig. 1. We measured the surface roughness at three different locations and 

labelled them as measurement 1, measurement 2 and, measurement 3.  

The root radius of the deepest valley in Fig. 1 is calculated by first taking equidistant 

horizontal spacings, 𝑥𝑖+1 − 𝑥𝑖  = ℎ𝑖 and evaluating the first and second order numerical 

derivatives at 𝑥0 = 1.56 mm for the case of measurement 1. The central derivatives are 

evaluated using Eqs. (9) and (11) and the root radius using Eq. (8). Our approach uses the 

geometrical correlation between curvature and radius to determine the values of the root radii 

for the deepest valleys. Fig. 2 shows the geometrical correlation and the local data points used 

for evaluations. 

The root radii are evaluated by taking the height distributions within the limits of 𝑥−3 and 

𝑥+3 horizontal spacings. The evaluations should provide reasonable value of a root radius that 

characterises the deepest valley section. Therefore, we made subsequent evaluations by altering 

the steps of increments on the horizontal spacings, ℎ𝑖. The evaluated root radii for the different 

spacings are presented in Fig. 3. 

Fig. 3 shows the relationship between the horizontal spacings and the calculated radii of the 

three measurements. For the horizontal spacings, ℎ𝑖 < 0.1 mm, the calculated radii are high 

and do not provide reasonable values within the limits of the standard roughness parameters 

measured. For example, the notch radius of the deepest valley at ℎ𝑖 = 0.005 mm is 111.09 μm 

for measurement 1. This notch radius is higher than the 𝑅𝑡, 𝑅𝑎 𝑅𝑣 and 𝑅𝑧 values determined 
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for the measurement. Similar behaviours are observed for horizontal spacings, ℎ𝑖 >
0.2 mm. For all the measurements, the minimum radii are found when the horizontal spacings 

are between 0.01mm and 0.02 mm. We used the minimum notch radii calculated in the SCF 

estimations. The SCFs are calculated using the analytical methods proposed by Inglis, Nueber 

and Arola-Ramulu, see Eqs. (5)–(7). In parallel, we used FE approach on COMSOL to model 

the roughness profiles and evaluate the SCF computationally. 

Figure 1. The surface roughness profile of the Alumec 89 block measured after the sanding process 

(measurement 1). The dominant valley region data points are used to compute the notch root radius. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Geometrical correlation between radius and curvature, used for estimating the root radius of 

the deepest valley.  
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Figure 3. Calculated notch radii of the deepest valley sections with variations made on horizontal 

spacing, ℎ𝑖. 

Theoretical methods   

The methods proposed by Inglis, Neuber and Arola-Ramulu use different surface roughness 

parameters in SCF evaluations. These conventional surface roughness parameters are 

determined by roughness measurements. We used the SJ-400 surface roughness profiler and 

followed ISO 4287 standard for the skidless measurements. Table 1 shows parameters that are 

used in SCF calculations. 

Table 1. Surface roughness parameters used in SCF evaluations. 

 

For the Neuber’s method, the loading condition, 𝑛 = 2, and spacing to asperity ratio, 𝜆 =
1 are used. For the Arola-Ramulu, the loading condition is 𝑛 = 2, whereas, for the case of 

Inglis, we used the maximum depth, 𝑅𝑣 = 𝑎.  

 

FE analyses on COMSOL  

The raw data of the surface roughness are imported to COMSOL geometry tool to model the 

profile using interpolation curve function.  Boundary loads of 𝜎𝑥 = 100 Pa and 𝜎𝑥 =  −100 Pa 

are applied on the two opposite edges of the profile, with a plane-stress approximation used for 

the 2D structural analyses. We studied the convergence of the solutions by iteratively reducing 

                   Surface roughness parameters 

 

 

 

Total height 

 

(𝑅𝑡 , 𝑅𝑦) 

Arithmetic 

mean 
(𝑅𝑎) 

Maximum 

depth 
(𝑅𝑣) 

10-point 

mean 
(𝑅𝑐 , 𝑅𝑧) 

Measurement  

Values [μm] 99.4 16.1 52.7 62.6 Measurement 1 

Values [μm] 106.7 14.7 69.3 61.6 Measurement 2 

Values [μm] 143.6 18.9 93 75 Measurement 3 
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the element size up to 1.6𝑒−6 mm.  Fig. 4 shows the result of the von Mises stress distribution 

for the measurement 1, with the coordinate value superimposed. 

Figure 4. Von Mises stress distribution (𝜎𝑣)  of the rough surface profile under a 100 Pa remote tension 

in the 𝑥 direction (Measurement 1). 

For the 𝜎𝑥 = 100 Pa remote tensile loading, the computational method provides the stress, 

𝜎𝑣 = 344.414 Pa at the deepest valley section. Similar computational analyses are made for 

the measurement 2 and measurement 3. 

Results and discussion 

The theoeritical and computation approaches are used to estimate the SCF. The Neuber’s and 

Inglis approaches showed higher SCF estimations in all the cases studied. On the other hand, 

the Arola-Ramulu method was better with minimum deviations. Comparing to the FE 

calculations, the method showed a minimum of 6.7% and a maximum of 16.3% errors for the 

measurements 1 and 2 respectively.  Fig. 5 shows the comparisons of the SCFs evaluated using 

both theoretical and computation methods. 

The theoretical and computational approaches provided SCFs that range between 1.96 and 

4.29 for all measurements. The Neuber and Inglis approaches overestimated the SCFs and 

resulted in errors greater than 30% in most of the cases. Whereas, the Arola-Ramulu showed 

a maximum of 16.3 %. The calculated notch radius is commonly used in all theoretical 

calculations, however the Arola-Ramulu’s showed the closest SCF estimation to the FE 

computations.  

The Inglis approach works better for an isolated shallow notch which can be approximated 

to an elliptical geometry. Whereas, the Neuber’s is a semi empirical approach for successively 

equidistant adjacent notches which have similar depth and width [16]. The Arola-Ramulu 

approach considers various surface roughness parameters that are inherent to the stochasticity 

of the profile, thus estimating SCF better than the two. The study on fatigue notch factor of a 

rough surface specimen by [24] also confirmed that the Arola-Ramulu estimates SCF better 

than the Neuber’s. 

 



 
59 

 

 

 

 

 

 

 

 

Figure 5. Calculated SCF using analytical and computational methods. 

Conclusion  

The surface roughness of Alumec 89 block is measured using SJ 400 surface roughness tester 

to identify the dominant valley radius and estimate the SCF within the region. The theoretical 

and semi-empirical methods are based on the effective root radius of the region. Therefore, we 

used the relationship between a curvature and central difference derivatives to evaluate the 

radius. We calculated the SCFs using the typical approaches proposed by Inglis, Neuber and 

Arola-Ramulu and compared them to the FE analysis on COMSOL. The findings provide SCF 

values that are close to each other asserting the viability of our method in root radius estimation. 

Comparing the FE analysis, the Arola-Ramulu’s method showed good estimation with smaller 

deviations. Similar conclusions are drawn in SCF comparisons by [14] on fatigue notch factor 

studies, and [13] on flexural strength reduction studies.  

The notch radius and SCF studies have direct relevance to understand the influence of 

surface roughness on the fatigue strength of materials. The studies on the effect of surface 

roughness on fatigue strength of aluminium alloy [25], the relationship between fatigue notch 

factor and strength [26], and the effect of notch geometry on fatigue strength [27] emphasize 

the role of theoretical SCF in fatigue analyses. There exists a well-established semi empirical 

method that relate the theoretical SCF, with the material and geometry dependent fatigue notch 

factor [6, 9]. This leads to understanding the fatigue damage of components associated to 

deepest valleys. However, the FE analyse on the rough surface profiles showed a wide variety 

of stress peaks which are localized across the roughness domain. Therefore, experimental 

investigations would be required to study the localized fatigue phenomena of rough surface 

profiles. 
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