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Summary  Typical concrete is a mixture of Portland cement, water, and aggregates. While 
aggregates have a substantial effect on the concrete strength and fracture behavior, the focus of 
the present study is on the hardened cement paste which can be further divided into the unreacted 
core, inner and outer products. In high strength concrete, water-to-cement ratio is low, and thus 
the distance between cement particles is small. Also, the amount of unreacted (high strength) core 
is higher, and the porosity is low. When water-to-cement ratio is higher, both the distance between 
cement particles and the porosity due to capillary pores increases. In the present study, we develop 
a numerical model based on the embedded discontinuity finite elements to predict the effect of 
the water-to-cement ratio on the compressive fracture behavior of concrete. Representative 2D 
plane strain simulations demonstrate that the present method captures the major features of 
concrete fracture and, particularly, qualitatively predicts the known effects of the water-to-cement 
ratio on concrete compressive strength. 
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Introduction 

Concrete is the most widely used building material of the world. From the structural 

engineering point of view, it is thus crucial to understand the effects of the typical 

concrete constituents, i.e., Portland cement (20 wt%), water (10 wt%), and aggregates 

(70 wt%), on its strength and fracture behavior. When concrete is cast into a mold, a 

hydration process of cement starts, forming mainly Calsium Silicate Hydrate (C-S-H) 

which binds the aggregates together and gives the concrete its strength. The hardened 

cement paste can further be divided into the unreacted core (of a cement particle), inner 

and outer products. 
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The water-to-cement ratio has also a substantial effect on the concrete strength. In 

high strength concrete, water-to-cement ratio is low [1], and thus the distance between 

the cement particles is small. Also, the amount of unreacted (high strength) cores is 

higher, and the porosity is low. When water-to-cement ratio is higher, both the distance 

between cement particles and the porosity due to capillary pores increases [1]. These 

concepts are schematically illustrated in Figure 1, showing also an electron microscope 

image of the main hydration product C-S-H. 

    

Figure 1. Schematic illustration of hardened cement paste with low and high water-to-cement 

ratio (left), and electron microscope image of C-S-H (right, figure by VTT). 

Naturally, concrete is also one of the most studied material, both experimentally [2] 

and numerically [3]. At the structural scale, the numerical modelling of concrete 

structures is typically based on macroscale damage/plasticity constitutive models 

implemented in the finite element method (FEM) [4–6]. This approach, appropriate 

especially in the analysis of massive structures, homogenizes the bi-phasic mesostructure 

of concrete. At the representative volume element scale, a mesoscopic approach 

describing explicitly the concrete mesostructure, i.e., the hardened cement matrix and the 

aggregates, is often adopted [7–10]. However, modelling the effect of water-to-cement 

ratio on concrete strength seems rare.  

In this paper, we develop a numerical model to predict the effect of the water-to-

cement ratio on the fracture behavior of concrete under uniaxial tension and compression. 

At this stage of developments, the effect of aggregates is neglected due to the different 

length scales of aggregates (usually visible to the naked eye) and cement particles (usually 

not visible to the naked eye). Moreover, we assume that the three sub-phases of the 

hardened cement paste can be represented, for purely mechanical purposes, as a linear 

elastic fracturing material, where the fracture is described by the embedded discontinuity 

finite elements. This method is chosen as it is an enriched finite element method being 

thus superior in fracture description over the classical FEM based on the smeared damage-

plasticity description of material failure. Moreover, the reason for choosing the embedded 

discontinuity FEM approach instead of the extended FEM is the fully local nature of the 

former. This allows static condensation of the extra degrees of freedom representing the 

discontinuity jumps in quasi-static and implicit dynamic analyses. In the explicit setting, 
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the fully local nature allows to implement the discontinuity kinematics and the traction-

separation law analogous to plasticity models, which means that the robust local return 

mapping algorithms can be readily used. The model originally developed by Saksala [11] 

is adopted here. Representative 2D plane strain numerical simulations demonstrate that 

the present method captures the major features of concrete fracture both under tension 

and compression and, particularly, qualitatively predicts the known effects of the water-

to-cement ratio on concrete strength. The 2D plane strain assumption is chosen for 

simpler implementation and computational economy reasons.  

Numerical method 

Concrete fracture model 

Fracturing of the hardened cement paste is modelled by the embedded discontinuity 

approach. This method describes a crack by a displacement discontinuity embedded 

inside a finite element [12]. In the multiple discontinuity version, many intersecting 

discontinuities can be embedded inside an element. The present study employs the 

constant strain triangle (CST) element with three embedded discontinuities (see Figure 

2). For this element, the displacement and strain fields can be written as [11,13] 

 

𝐮(𝐱) = 𝑁𝑖(𝐱)𝐮𝑖
𝑒 + ∑ 𝑀𝛤𝑑

𝑘 (𝐱)𝟑
𝒌=𝟏 𝛂𝑑

𝑘    with  𝑀𝛤𝑑

𝑘 (𝐱) = 𝐻𝛤𝑑

𝑘 (𝐱) − 𝜑𝑘(𝐱) (1) 

  𝛆(𝐱) = (∇𝑁𝑖 ⊗ 𝐮𝑖
𝑒)𝑠𝑦𝑚 − ∑ ((∇𝜑𝑘(𝐱) ⊗ 𝛂𝑑

𝑘 )
𝑠𝑦𝑚

+ 𝛿𝛤𝑑

𝑘 (𝐧𝑘 ⊗ 𝛂𝑑
𝑘 )

𝑠𝑦𝑚
)𝟑

𝒌=𝟏  (2) 

 

where 𝑁𝑖 and 𝐮𝑖
𝑒 are the standard interpolation functions and nodal displacements (i = 

1,2,3 with summation on repeated indices), respectively, and the displacement jump at 

each discontinuity is denoted by 𝛂𝑑
𝑘 . In addition, 𝐻𝛤𝑑

𝑘  and 𝛿𝛤𝑑

𝑘  are the Heaviside function 

and its gradient, the Dirac delta function. The usual (with low order elements) 

elementwise constant displacement jump assumption, yielding ∇𝛂𝑑
𝑘 ≡ 𝟎, was exploited 

in arriving at the expression (2).  

The reason for using the awkward decomposition (1), instead of the intuitive one with 

𝜑𝑘 ≡ 0, is that this one restricts the effect of 𝛂𝑑
𝑘  inside the corresponding finite element 

making the formulation fully local, i.e., 𝛂𝑑
𝑘 ≡ 𝟎 outside that element. Thereby, the 

embedded discontinuity enrichment does not increase the global degrees of freedom. 

Functions 𝜑𝑘 appearing in 𝑀𝛤𝑑

𝑘  need to be specified. For elements with three 

intersecting discontinuities parallel to the element edges (see Figure 2), these functions 

are simply the shape functions of the opposite nodes, i.e., 𝜑𝑘 = 𝑁𝑘. The crack normals 

are thus 𝐧𝑖 = ∇𝑁𝑖/‖𝑁𝑖‖. If the element has only a single discontinuity, 𝜑 is chosen, from 

among the possible combinations of the shape functions, so that its gradient is as parallel 

as possible to the crack normal 𝐧𝑑:  

 

 ∇𝜑 = arg (max
𝑘=1,2

|∑𝑖=1
𝑘 ∇𝑁𝑖∙𝐧𝑑|

‖∑𝑖=1
𝑘 ∇𝑁𝑖‖

) (3) 

 

Following [10,14], the enhanced assumed strains (EAS) concept is used to impose the 

traction continuity over the discontinuities. This means that the variation of the enhanced 
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part of the strain in (1) is constructed in the strain space orthogonal to the stress field 

(details are in [10,14]). With the CST element, the strong (local) form of traction 

continuity finally reads 

 

                       𝐭Γ𝑑

𝑖 = 𝛔 ∙ 𝐧𝑖 = (𝐄: (�̂� − ∑ (∇𝑁𝑘(𝐱) ⊗ 𝛂𝑑
𝑘 )

𝑠𝑦𝑚3
𝑘=1 )) ∙ 𝐧𝑖 (4) 

 

where 𝐧𝑖 is the crack (discontinuity) normal, �̂� = (∇𝑵𝑖 ⊗ 𝐮𝑖
𝑒)𝑠𝑦𝑚, E is the elasticity 

tensor, and  and  are the stress and (total) strain tensor, respectively. This formulation 

results in a simple implementation that requires neither the explicit position of the 

discontinuity within the element nor its length to be known. 

 

Figure 2. Numerical representation (finite element mesh) of the hardened cement paste and the 

fracture types. 

Next, the concepts presented above are applied to fracturing hardened cement paste, 

as illustrated in Figure 2. An idealized geometry of concentric circles is assumed for the 

presentation of the cement particles and the inner product layer around them. The 

unreacted core and the inner reaction product, modelled as a strip of finite elements 

surrounding the core, fail according to the first principal stress criterion. Upon its 

violation, a discontinuity (crack) with a normal parallel to the first principal direction is 

introduced in a finite element during analysis. The third phase represents both the outer 

hydration product and the capillary space between cement particles. Therefore, the 

strength of the third phase decreases with increasing water-to-cement ratio. However, this 

feature is neglected here. The failure of the “hairy-like” outer reaction products is 

described by pre-embedded discontinuities, three in each triangular element in the mesh, 

aligned parallel to the element edges (Figure 2). 
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Traction-separation model for solving the crack opening 

A method for solving the displacement jump increments and the traction-separation law 

at each discontinuity is needed. For this end, a computational multisurface plasticity 

inspired model based on the classical elastic predictor-plastic corrector split is employed. 

The relevant model components, i.e., the loading functions 𝜙𝑖, softening rules and 

evolution laws are defined as 

 

        𝜙𝑖(𝐭Γ𝑑

𝑖 , 𝜅𝑖 , �̇�𝑖) = 𝐧𝑖 ∙ 𝐭Γ𝑑

𝑖 + 𝛽|𝐦𝑖 ∙ 𝐭Γ𝑑

𝑖 | − (𝜎t + 𝑞𝑖(𝜅𝑖 , �̇�𝑖)) (5) 

        𝑞𝑖 = ℎ𝑖𝜅𝑖 + 𝑠�̇�𝑖,   ℎ𝑖 = −𝑔𝜎t exp(−𝑔𝜅𝑖) ,   𝑔 = 𝐺Ic
𝜎t

 (6) 

        �̇�Γ𝑑

𝑖 = −𝐄: ∑ (∇𝑁𝑘(𝐱) ⊗ �̇�𝑑
𝑘 )

𝑠𝑦𝑚3
𝑘=1 ∙ 𝐧𝑖 (7) 

        �̇�𝑑
𝑖 = �̇�𝑖

𝜕𝜙𝑖

𝜕𝐭Γ𝑑
𝑖 ,   �̇�𝑖 = −�̇�𝑖

𝜕𝜙𝑖

𝜕𝑞𝑖
  (8) 

         �̇�𝑖 ≥ 0,   𝜙𝑖 ≤ 0,   �̇�𝑖𝜙𝑖 = 0    (𝑖, 𝑗 = 1,2,3) (9) 

 

where 𝐦𝑖  denotes the unit tangent of a discontinuity, 𝜅𝑖, �̇�𝑖  are the internal variable and 

its rate related to the softening law for a discontinuity, and t and s are the tensile strength 

and the viscosity of the material. Moreover, ℎ𝑖 is the softening modulus of the exponential 

softening rule. By (8), the internal variable is identical with the viscoplastic multiplier, 

i.e., �̇�𝑖 ≡ �̇�𝑖 . Parameter g controls the initial slope of the softening curve and is calibrated 

by the mode I fracture energy GIc. Finally,  is a parameter that controls the effect of shear 

(mode-II) component of the traction. The material behaviour is isotropic and linearly 

elastic until the tensile strength is reached. The equations (9) are the classical Kuhn–

Tucker conditions that impose the consistency. 

As the model described by Equations (5)–(9) is analogous to viscoplastic consistency 

model by Wang et al. [16], it can be solved by the standard methods of computational 

plasticity. That is, a trial stress is first calculated based on Equation (5) where the present 

total strain comes from the global solution. Then, the trial values (evaluated with the trial 

stress) of the loading functions in (5) are checked. If violated, an inelastic corrector step, 

i.e., the integration of the equations in (6)–(8), is performed and the new values for 

internal variables and the displacement jump are obtained. Then, the new stress is 

calculated based on Equation (5) after which the internal force vector for each element is 

computed.  

Numerical examples 

Material and model parameters, and the numerical concrete samples 

Material and model parameters used in the present 2D plane strain simulations are given 

in Table 1. The values are for demonstrational purposes only and may not thus be realistic 

ones for the three subphases of the hardened cement paste. It should be reminded that it 

is challenging, if not impossible, to measure the elastic and strength properties of these 

three subphases. However, intuitively the unreacted core should be the strongest and the 

outer product weakest. The tensile strength values in Table 1 reflect this order. Moreover, 

the outer product tensile strength and Young’s modulus are typical for Portland cement. 
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Table 1. Material properties for simulations. 

 

 

 

 
 

 

 

 

 

 

 

Figure 3 shows the numerical concrete samples, and the finite element meshes. The 

first sample (Conc1, with 30 cement particles) represents the cement paste with higher 

w/c ratio, while the second (Conc2, with 60 cement particles) has lower w/c ratio, 

corresponding to the idealized features in Figure 1. 

It should be noted that the dimensions of the samples are highly exaggerated for 

computational economy reasons and do not represent the true scale of unreacted cement 

particles having a diameter in the range of 1−100 m. Some numerical values 

characterizing the numerical concrete samples are calculated in Table 2, where Auc, Aip, 

Aop, Atot are the areas of the unreacted cores, inner products, outer products, and the total 

sample areas, respectively. 

 
Table 2. Characteristics of the numerical concrete models. 

 

 

 

 
 

 

The global equations of motion are solved explicitly in time with a self-written Matlab 

code. This choice requires, due to the critical time step, using rather high loading rate to 

carry out uniaxial tests on the samples in Figure 3. For this reason, the viscosity moduli 

in Table 1 are chosen small enough not to cause any strain rate hardening effects.     

 

Property/Mineral Unreacted core Inner product Outer product 

E [GPa] 60 27.5 27.5 

 0.2 0.2 0.2 

t0 [MPa] 10 6 3.5 

GIc [N/m] 0.04 0.02 0.02 

 [kg/m3] 2400 2400 2400 

s [MPas/m ] 0.001 0.001 0.001 

 1 1 1 

Sample/fraction Auc/Atot Aip/Atot Aop/Atot 

Conc1 0.054 0.211 0.735 

Conc2 0.287 0.229 0.490 
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Figure 3. Numerically modelled concrete (Conc1) and the FE mesh (21431 elements) (a), and 

numerically modelled concrete 2 (Conc2) and the FE mesh (20350 elements) (b). 

Uniaxial tension test 

Uniaxial tension test on the numerical concrete samples is carried out here. The samples 

are simply supported at the lower edge, while a constant velocity boundary condition 

(BC) is applied at the upper edge with v0 = 0.01 m/s resulting in an average strain rate of 

0.2 s-1. The simulation results are shown in Figure 4. 

The predicted failure modes for both numerical samples attest the experimental 

transversal splitting of the sample with some local differences. However, the predicted 

tensile strengths, 3.048 MPa for Conc1 (higher w/c ratio) and 3.085 MPa for Conc2 

(lower w/c ratio), are almost the same, i.e., the model does not predict the weakening 

effect of increasing water content. The reason for this is clearly the strength of the third, 

outer products, phase is assumed constant when it should decrease with increasing water-

to-cement ratio.  
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Figure 4. Simulation results for uniaxial tension test: Failure mode (in terms of crack opening 

magnitude) numerical concrete (Conc1) (a), numerical concrete 2 (Conc2) (b), and the 

corresponding stress-strain curves c). 

Uniaxial compression test 

Uniaxial compression test on the numerical concrete samples is carried out here. As with 

the uniaxial tension test, lower edge is simply supported, and a constant velocity BC is 

applied at the upper edge with v0 = 0.05 m/s resulting in a strain rate of 1 s-1 (higher 

loading rate is used in compression since the compressive strength is roughly 10 times 

higher for normal concrete). 

According to simulation results in Figure 5a, the failure mode for Conc1 show 

multiple shear band-type of failure planes which propagate mostly in the weaker outer 

product space. The failure mode predicted with Conc2, exhibit similar features but the 

failure planes are more vertical and resembles commonly observed axial splitting failure 

mode. In both cases, some unreacted cores have failed as well.  

 

Figure 5. Simulation results for uniaxial compression test: Failure mode (in terms of crack 
opening magnitude) numerical concrete (Conc1) (a), numerical concrete 2 (Conc2) (b), and the 

corresponding stress-strain curves c). 

As for the compressive strengths, being 24.4 MPa for Conc1 (higher w/c ratio) and 

36.5 MPa for Conc2 (lower w/c ratio), the one with more water shows substantial 

weakening.  However, comparison to experimental results is impossible as the exact w/c 

ratio of the numerical samples cannot be determined. The reason for the present model 
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predicting substantial weakening in compression but not in tension is as follows: First, it 

should be reminded that the failure of the cement particles and the inner products is by 

violation of the Rankine criterion, while the outer products can fail by shear and tension. 

Now, under tension, there is enough the weakest material, i.e., the outer products phase, 

in both samples for the tensile (mode I) failure to find its horizontal path through the 

specimen. However, this is not the case in compression, as can be observed in the failure 

modes in Figure 5, where the failure mode for Conc2, having the smaller amount of the 

weakest outer products phase (see Table 2), has a more vertical trend in the localized 

crack opening bands than the more inclined trend in the failure mode for Conc1. In other 

words, the smaller amount of the weakest phase forces the compressive fracturing to 

propagate in a less inclined manner, with respect to the loading axis, which naturally 

requires higher loading. 

Finally, it is insightful to give a quantitative description of the effect of the w/c ratio 

on concrete strength. The classical Abrams relation [17] between the compressive 

strength and w/c ratio is  

 

          𝜎𝑐 = 𝐴/𝐵
𝑤
𝑐  (10) 

 

where A and B are empirical constants depending on the cement type, aggregates, 

admixture, and age curing regimes. For the context of Abrams’ tests, the constants A and 

B had values 14000 and 7, respectively, while the unit of compressive strength was psi. 

According to this law, when w/c ratio increases from 0.3 to 0.6, the compressive strength 

drops from 7809 psi (53.8 MPa) to 4355 psi (30 MPa).  

Conclusions 

The present numerical model based on embedded discontinuity finite elements correctly 

predicts the qualitative effect of water-to-cement ratio on the compressive strength of 

concrete, i.e., the higher the w/c ratio, the lower the concrete strength. However, the 

model does not predict the weakening effect for tensile strength due to the constant outer 

products phase strength assumption.  

At the present preliminary stage of the model, only qualitative predictions are 

possible, as there is no link in the model between the w/c ratio and the distance of 

unreacted cement particle cores as well as the thickness of the inner reaction product 

layer. To make the model predictions quantitative, these parameters should be 

incorporated into the model, which is a nontrivial task. Moreover, the aggregates should 

also be included in further developments of the model. Finally, as the 2D plane strain 

assumption does not account for the true 3D geometry of the cement particles (or the 

aggregates), more reliable results could be obtained by a 3D extension of the present 

modelling approach.       
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