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Summary In order to get detailed information about deformations of structures efficiently, it
may be necessary to use finite element models which combine three-dimensional discretizations
of solids with approximations of two-dimensional models for shells. Here we show how the idea of
conjugate approximations can be used as a means to obtain a formulation of mixed-dimensional
coupling between shells and solids. Our method is consistent with respect to the principle of
virtual work and does not depend on additional computational parameters, an augmentation
of a potential-energy functional by introducing new unknowns, or computations over auxiliary
meshes.
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Introduction

It is common that finite element analysis of a structure which is a mixture of thin shell-like
bodies and relatively massive solids is needed. Similarly, in order to get detailed informa-
tion about deformations of thin bodies efficiently, it may be necessary to use refined mod-
els which combine local three-dimensional discretizations of solids with approximations
of two-dimensional models for shells [9, 3] based on dimensional reduction. For example,
such analyses may be important in order to fully account for boundary layers. These needs
necessitate the development of special techniques to handle mixed-dimensional couplings
so that the difference in the dimensionality of the constituent models can be handled.

Given the development of high-speed computers, a seemingly natural approach to avoid
the problem of mixed-dimensional coupling would be to apply only three-dimensional dis-
cretizations. However, thinness causes several troubles in practice. Firstly, standard
low-order finite elements cannot in general be used to obtain reliable solutions for shells,
since these methods suffer from approximation failures resulting in numerical overstiff-
ness (locking). In the case of very thin shells, loss of significance errors may also be a
serious trouble, especially when the solid finite elements based on nodal unknowns are
used in the computation. Therefore, the discretization over a solid should either be based
on (hierarchic) high-order finite elements or be based on special low-order formulations
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that account for locking. We note that much of this work to construct locking-free finite
elements for shell-like bodies is however limited to the two-dimensional (surface) repre-
sentations of shells, i.e., accounts of suitable three-dimensional formulations are far less
numerous. Secondly, generating a conforming three-dimensional finite element mesh may
require an excessive mesh refinement in order to fit a thin three-dimensional body. If
the requirement of having a conforming discretization was relaxed, the need for handling
additional constraint equations would again arise, albeit in a different form. On the other
hand, although there is a modern trend that new shell finite elements are increasingly
three-dimensional by using richer kinematic assumptions over the thickness, they are not
usually considered as alternatives to discretize a massive body, i.e., the assumption of
thinness is still vital in their derivation.

We note that different approaches to handle mixed-dimensional couplings have been
proposed in literature. They include the use of special transition finite elements [12],
handling multipoint constraint equations [4], applying formulations based on Nitche’s
method [13], and iterative procedures that couple a global two-dimensional model with
a local three-dimensional model via using overlapping decompositions [5]. We note that
the use of transition finite elements involves the burden of constructing new finite element
types and also complicates the preprocessing step of analysis, as special connectivity of
degrees of freedom has to be applied over a local mesh consisting of them.

On the other hand, in the case of hyperelasticity that enables us to describe our struc-
tural analysis problem in terms of an energy functional, a general strategy to handle
multipoint constraint equations is obtained by the method of Lagrange multipliers, at
the cost of introducing additional unknowns. Here different approaches may be used to
derive the actual constraint equations. They can be generated by purely kinematic con-
siderations, but energy arguments (such as work equilibration) may also be applied in
the derivation [11]. It is notable that the augmentation of a potential-energy functional
in terms of the Lagrange multipliers gives rise to a discrete saddle point problem whose
efficient solution with iterative methods may become less straightforward [1]. The for-
mulations based on Nitche’s method have the benefit that they avoid the introduction of
additional unknowns, but an additional computational stabilization (penalty) parameter
has to be introduced. As an alternate to using the Lagrange multipliers, the penalty
methods have also been applied to handle multipoint constraint equations, but the ques-
tions of consistency and computational accuracy may then arise. For a sampling of earlier
work on the subject of this paper, see, for example, papers cited in [13].

It should be noted when Lagrange multipliers are introduced for enabling the coupling
of structural models, there are some subtleties in their interpretation. If the solution of
shell equations is naturally extended to the three-dimensional body associated with the
mid-surface of the shell, the interaction between the shell model and the solid model can be
considered to occur on a two-dimensional surface Γ, which contains a spatial curve giving
the intersection of the mid-surface and the solid. The concept of surface coupling is thus
introduced in a natural way and using a weak formulation over Γ to obtain the coupling
constraints leads to considering a Lagrange multiplier as a member in a suitable function
space on Γ. The choice of this function space may be expected to be an essential ingredient
to obtain stability, which may not in general be immediate as saddle point methodology is
employed. However, in engineering literature multipoint constraints are typically treated
by using Lagrange multipliers without referring to function spaces. That is, the Lagrange
multipliers are introduced after the generation of multipoint constraints when the linear
algebraic equations of the augmented problem are assembled; cf., the treatment in [4].
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The Lagrange multipliers are then interpreted just as discrete (generalized) forces applied
through points on the coupling interface Γ.

The apparent differences in the descriptions of Lagrange multipliers discussed above
are interesting and are also our source of inspiration here. We shall investigate such
aspects by considering a regular reconstruction of force fields from pointwise reactions
(generalized forces), which are often routinely computed in finite element analyses of
specific problems and which are now closely related to the possible interpretations of
Lagrange multipliers. We note that such reconstruction is subject to a priori choice of
regularity in a manner reminiscent of choosing a suitable function space for a Lagrange
multiplier. Here our reconstruction is a global field and is as smooth as the primary finite
element approximation (that is, H1-regular), so we avoid an irregular reconstruction in
the sense of distributions. These considerations finally bring us to new ideas to formulate
coupled structural models without introducing either adjustable computational parame-
ters or Lagrange multipliers as additional unknowns. In addition, this process is possible
without considering the coupling interface Γ as a two-dimensional surface and performing
auxiliary computations over it like those used in [11]. A relevant theory which we apply
in our development was put forward in a paper [2] on conjugate approximations published
already in the early 1970’s.

Our plan is first to outline the development of a specialized shell model from a three-
dimensional energy principle and to introduce very basic concepts of conjugate approxi-
mations (which suffice for our purposes) in the next two sections. In the next few sections
after these preliminaries, we then show how the concepts introduced can be applied to
construct a model for shell-solid coupling. We shall start with a somewhat generalized
variational formulation of the field equations over each domain in order to include (gen-
eralized) forces, which are considered to be either forces exerted on the solid by the
shell body or coupling reactions occurring when the shell body is constrained to obey the
deformation of the solid (therefore, the idea of using a domain decomposition of Dirichlet-
Neumann type is inherent in our derivation, but we emphasize that our solution strategy
handles all equations simultaneously). We then use conjugate approximations to represent
these forces between the constituent parts, so that we can explicitly construct the linear
functionals of the variational formulation that account for the coupling forces. We note
that in order to introduce the key ideas in a simple way we shall start with the case of
the coupling of two three-dimensional models, which is usually treated routinely without
any reference to conjugate approximations.

This theoretical development culminates in a proof of the satisfaction of work equili-
bration of (generalized) coupling forces. This result is of both practical and theoretical
importance by ensuring that the total potential-energy functional of the coupled structure
has a natural decomposition into two expressions over a solid and a shell domain, so that
no perturbation of energy is associated with the coupling forces. The formulation of this
property is notable in its conciseness, as we do not need for example definitions over auxil-
iary meshes. The rest of the paper covers some implementation aspects, shows the utility
by computational examples and also includes some concluding remarks. In regard to the
implementation, we also discuss the possibilities of simplifying approximations so that
some global computations needed in the precise computation of conjugate basis functions
can be avoided. Our implementation, used in the computational examples of this paper,
is available within open source FEM software Elmer [10].
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Models for structures

The constraint equations needed in mixed-dimensional coupling between shells and solids
depend crucially on the choice of equations used to approximate deformations of shells.
Here we shall consider hyperelastic bodies, so that energy arguments can be applied in
order to simplify the shell model under kinematic assumptions. To simplify our presen-
tation, the formulation of linearized and static equations is only treated.

Our assumption about hyperelastic bodies enable us to seek equilibrium states by
seeking those states that minimize the potential-energy functional for the structure under
suitable subsidiary conditions. Here the kinematic assumptions on the displacement field
u are assumed to be of sufficient richness, so that the strain-energy function W (·, ε(u)) as
a function of place can be parametrized consistently by all component functions εij(u)(·)
of the three-dimensional strain tensor field ε(u) over the entire structure, consisting of
bodies which are either thin or unsuitable for analysis with shell models. The total stored
energy in the structure may thus be decomposed as

U(u) =
∫
Ω

W (·, ε(u))dΩ +

∫
Ω̂

W (·, ε(u))dΩ̂, (1)

where Ω̂ ⊂ E3 represents the thin parts. We may then define the potential-energy func-
tional by

Π(u) = U(u) + F(u), (2)

where F(u) is the potential energy of the forces applied to structure, having an analogous

decomposition into two expressions over Ω and Ω̂.
The shell body Ω̂ is taken to consist of points within a small distance from its mid-

surface S ⊂ E3. We assume that any point x ∈ Ω̂ has a unique representation in normal
coordinates as

x = s+ y3d(s), (3)

where d : S → R3 is a unit vector (director) field and y3 ∈ [−d/2, d/2], with d being
the shell thickness. If we let φ : ω → S, with ω ⊂ R2, be a parametrization of the
mid-surface, the full representation of Ω̂ in three curvilinear coordinates is obtained by
rewriting (3) as

x = Θ(y, y3) ≡ φ(y) + y3(d ◦φ)(y), (4)

with y being a 2-tuple (y1, y2), and by letting the function Θ−1 : Ω̂ → R3 assign a triple
of curvilinear coordinates (y1, y2, y3) to each point x in the shell.

In view of the representation (3), it is natural to approximate the displacement vector
field of the shell

(s, y3) 7→ u(s, y3) (5)

in a systematic manner by representing it as a power series in the thickness coordinate.
Here we consider an approximation in the form

u(φ(y), y3) ≡ v(y)− y3β(y)− 1

2
(y3)2ψ(y), (6)

where the part ψ(y) can be expressed simply as

ψ(y) = [a3(y) ·ψ(y)]a3(y), (7)
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with a3(y) = a
3(y) = (d ◦φ)(y).

The stored energy and the potential energy of forces for the shell can be simplified
in many ways by integrating over the shell thickness, by omitting terms involving higher
powers of the ratio of the shell thickness to a characteristic radius of curvature, and
by using an orthogonal (re-)parametrization of the mid-surface [7]. In addition, a work
presented in [6] shows that the model which employs the displacement parametrization
in terms of a 7-tuple of scalar fields according to (6) and (7) can be simplified in an
asymptotically correct manner into a 6-parameter model. We note that in [6] a basic
material described by two Lamé coefficients was assumed, but a generalization to allow
a more general class of materials and also nonlinearities is possible. For the simplified
expressions of the stored energy and the potential energy of forces such that the energy
densities for the 6-parameter shell model are expressed over the shell mid-surface, see [6]
and also [10].

When the asymptotically correct simplification into a 6-parameter shell model is em-
ployed, the primary unknowns of the shell model are related to the three-dimensional
displacement u : S × [−d/2, d/2] → R3 by

(v ◦φ−1)(s) = u(s, 0),

(β ◦φ−1)(s) = −Du(s, 0)[d],
(8)

where the directional derivative is defined by

Du(s, 0)[d] = lim
α→0

u(s, α)− u(s, 0)
α

. (9)

This model is interesting from the viewpoint that, in connection with lowest-order finite
elements, the relations (8) in principle enable an easy computation of the constraints
of Dirichlet type, so that the edge displacement of the shell can be made to follow the
displacement of the solid. That is, if we had a perfectly regular mesh, we could create the
nodal constraints of Dirichlet type such that

(v ◦φ−1)(sk) =
u+

k + u−
k

2
,

(β ◦φ−1)(sk) = −u
+
k − u−

k

d
,

(10)

where u+
k and u−

k denote the solid displacements at the nodes which are located on the
upper and lower faces of the three-dimensional shell and met when proceeding from the
node sk in the direction of either positive or negative director. In practice, an excessive
mesh refinement may however be needed to create a solid mesh which conforms with the
faces of the three-dimensional shell body. In this paper, we shall use the 6-parameter
model, but other ways to enable the coupling will be constructed.

We note that we could try to handle coupling conditions by replacing (2) by an aug-
mented energy functional where additional Lagrange multipliers defined on the coupling
interface would enter. Here such methods are not straightforward to employ, since after
performing the selective dimensional reduction there is no common surface where the La-
grange multipliers could naturally be interpreted as surface forces (tractions). We shall
derive methods which do not depend on generating an auxiliary mesh to enforce the
coupling.
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Preliminaries on conjugate approximations

An account of conjugate approximations given by Brauchli and Oden [2] adds to a theory
of finite element approximation concepts which shall be useful for our considerations of
calculating coupling constraints and which may be introduced in a manner reminiscent
of classical tensor analysis [8]. As a preliminary step, we likewise adopt the summation
convention that diagonally twice-repeated indices are summed over their range. In ad-
dition, we let θk ∈ H1(Ω) denote standard (Lagrange interpolation) finite element basis
functions that allow an approximation U(x) of u(x) over a body Ω as

U(x) = Ukθk(x). (11)

Now, the conjugate basis (or the dual basis in the terminology of tensor analysis
adopted in [8]) associated with the set of θk is the collection of θk obtained by

(θk, θi) = δki , (12)

where (·, ·) denotes the L2(Ω) inner product and δki is the Kronecker delta. We may also
write (·, ·)Ω if the domain of integration is made explicit. A conjugate approximation is
then defined by

U(x) = Ukθ
k(x) = (U, θk)θ

k(x). (13)

Here the scalars
Uk = (U, θk) (14)

are referred to as conjugate components, and we also have a similar definition of the
component Uk as

Uk = (U, θk). (15)

We note that concepts which would be similar to those of standard tensor analysis could
now be introduced if the metric tensor was replaced by the fundamental (a mass) matrix
to “raise and lower” indices. For practical applications, it is important to note that the
functions θk have a global support, though each of these functions exhibits a decay away
from a generating node, whereas the usual finite element basis function θk, of course, has
a local support.

To get an insight on how conjugate approximations enter into practical finite element
computations, we note that given standard abstraction (cf., for example, [3]) of a varia-
tional formulation posed over Ω in the form

AΩ(U, V ) = FΩ(V ), (16)

with 1/2AΩ(U,U) giving the stored energy in terms of a bilinear form AΩ(·, ·) and with
FΩ(U) giving the potential energy of forces, the entries Fk = FΩ(θk) entering the right-
hand side vector in the resulting system of linear algebraic equations are not usually
thought to have other meanings than discrete forces. However, if the linear functional FΩ

can be represented in terms of an input data f as

FΩ(V ) = (f, V )Ω, (17)

we have
FΩ(θk) = (f, θk)Ω = Fk,
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so that we may reconstruct the data f as the conjugate approximation

f(x) ≃ Fkθ
k(x).

Although this result is of little consequence in standard computation with a known f ,
we shall show that an analogue of this computation can be utilized in the derivation of
coupling constraints.

Formulation of a coupled model

To introduce in a very simple way how conjugate approximations can be made to enter
the formulation of coupled models, we shall first consider the coupling of two three-
dimensional models for solids having finite element unknowns U : Ω → R3 and Û :
Ω̂ → R3. Here we assume that the unknown Û obeys a Dirichlet constraint expressed
in terms of the values of U on the coupling interface consisting of the shared boundary
Γ ≡ ∂Ω∩∂Ω̂. For simplicity of exposition, we assume that finite element meshes conform
on Γ. Although this case seems overly simplistic, the ideas which we shall introduce here
are then applied to handle our primary problem of mixed-dimensional coupling between
shells and solids.

A variational formulation of the present problem is based on abstractions

AΩ(U,V) = (f ,V)Ω + (h(Û),V)Ω,

AΩ̂(Û, V̂) = (̂f , V̂)Ω̂ + (H(Û), V̂)Ω̂,
(18)

which in essence describe the result of the integration by parts of the inner product of
the field equations with a test function defined over each domain. However, the linear
functional

LΩ̂(V̂) ≡ (H(Û), V̂)Ω̂ (19)

in (18) represents a generalization to reconstruct coupling reactions H(Û) (similar to

support reactions as discussed in [4]) when Û is considered to be know and when the
treatment of Dirichlet constraints is relaxed somewhat on the coupling interface. In the
first place, we must however take LΩ̂(V̂) = 0, since no variations are generally allowed at
a boundary associated with Dirichlet constraints.

On the other hand, the linear functional

LΩ(V) ≡ (h(Û),V)Ω (20)

in (18) is related to the potential energy of the forces exerted on the body Ω by Ω̂. Its
representation will be chosen to depend on how the linear functional LΩ̂ is constructed.
We note that since the linear functional (20) accounts for the coupling forces without
referring to surface forces, the first equation of (18) now arises by first integrating by
parts under the condition of zero surface force on Γ and then applying the additional
coupling forces constructed in the form (20). That we here seek to construct a body force
field rather than a surface force field on Γ is a matter of choice.

Now, the standard engineering procedure of computing the discrete coupling reactions
(cf., [4]) as

Ĥ l
k(Û) = AΩ̂(Û, θ̂ke

l)− (̂f , θ̂ke
l)Ω̂, (k, l) ∈ NΓ × {1, 2, 3}, (21)
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where el = el give an orthonormal basis for R3 and the set NΓ lists the indices of nodes
on Γ, provides us a way to construct the components of the coupling reaction H = H lel
in the linear functional (19) as conjugate approximations

H l = Ĥ l
kθ̂

k,

as we have
Ĥ l

k = LΩ̂(θ̂ke
l) = (H iei, θ̂ke

l)Ω̂ = (H l, θ̂k)Ω̂. (22)

On the other hand, using a conjugate approximation for h in a similar manner gives

AΩ(U,V) = (f ,V)Ω + (θkel,V)Ωh
l
k, (23)

so invoking the law of action and reaction to set

hl
k(Û) = −Ĥ l

k(Û) (24)

and using (21) finally give

AΩ(U,V) +
∑
k∈NΓ

(θkel,V)Ω AΩ̂(Û, θ̂ke
l) = (f ,V)Ω +

∑
k∈NΓ

(θkel,V)Ω(̂f , θ̂ke
l)Ω̂. (25)

We note that the Dirichlet constraints on Γ may be created by requiring that the two
linear functionals yielding the values of degrees of freedom associated with the different
bodies have equal values for the shared nodes, so that

(Û, θ̂kel)Ω̂ = (U, θkel)Ω, (26)

giving
Ûk
l = (U, θkel)Ω (27)

or, simply,
Ûk
l = Uk

l , (28)

where (k, l) ∈ NΓ × {1, 2, 3}. In view of the foregoing considerations, the variational
formulation of the coupled problem can now be put into the form (here the construction

of H1-regular finite element spaces is standard and we omit the details): Find (U, Û) ∈
X× X̂ such that

AΩ(U,V) +
∑
k∈NΓ

(θkel,V)Ω AΩ̂(Û, θ̂ke
l) = (f ,V)Ω +

∑
k∈NΓ

(θkel,V)Ω(̂f , θ̂ke
l)Ω̂,

AΩ̂(Û, V̂) = (̂f , V̂)Ω̂,

(U, θiej)Ω − Û i
j = 0

(29)

for all kinematically admissible test functions (V, V̂) ∈ X∂ΩD
× X̂∂Ω̂D

, and (i, j) ∈ NΓ ×
{1, 2, 3}. The repeated occurrence of the scalar coefficients of the form (θkel,V)Ω both in
the terms that account for the coupling forces and in the Dirichlet constraints is notable.

A characteristic property of our formulation is work equilibration, i.e., for the solution
of the coupled problem we have

(h(Û),U)Ω + (H(Û), Û)Ω̂ = 0, (30)

which can be verified easily. It is notable that our procedure does not make any reference
to a traction field on the surface Γ. This is a consequence of our choice to reconstruct a
coupling body force field rather than a surface force field on Γ.
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Model for shell-solid coupling

We now try to imitate the development above in the case of shell-solid interaction. The
unknown of the shell model is a finite element field Û ≡ (v̂, β̂) : ω → R3 × R3, and the
variational formulation of this model is now based on abstraction

Aω(Û, (ŵ, η̂)) = (ĝ, (ŵ, η̂))ω + Lω((ŵ, η̂)), (31)

where the linear functional Lω to construct coupling reactions splits up into two parts as

Lω((ŵ, η̂)) = (H(Û), ŵ)ω + (Λ(Û), η̂)ω, (32)

with H(Û) and Λ(Û) interpreted as force resultants. As constraints of Dirichlet type
which enforce the shell to follow the displacement U : Ω → R3 of the solid, we employ

(v̂, θ̂kel)ω = (U, θkel)Ω,

(β̂, θ̂kel)ω = −(DU[d], θkel)Ω,
(33)

which are analogous to (26). Here mesh conformity is again supposed, so that any shell
edge which is a part of the (now, one-dimensional) coupling interface Γ is also an edge of
a solid element.

On the other hand, the abstraction to represent the variational formulation for the
solid is here augmented as

AΩ(U,V) = (f ,V)Ω + (h(Û),V)Ω − (λ(Û), DV[d])Ω, (34)

where the form of the last term is chosen such that it enables the development of the idea
of work equilibration. In this case, we can compute the discrete coupling reactions by

Ĥ l
k(Û) = Lω((θ̂ke

l,0)) = Aω(Û, (θ̂ke
l,0))− (ĝ, (θ̂ke

l,0))ω,

Λ̂l
k(Û) = Lω((0, θ̂ke

l)) = Aω(Û, (0, θ̂ke
l))− (ĝ, (0, θ̂ke

l))ω,
(35)

with (k, l) ∈ NΓ × {1, 2, 3}, so that the conjugate approximations H = elĤ
l
kθ̂

k and

Λ = elΛ̂
l
kθ̂

k can be obtained. If we assume analogous expansions for h and λ together
with setting

hl
k(Û) = −Ĥ l

k(Û),

λl
k(Û) = −Λ̂l

k(Û),
(36)

we are able to present the variational formulation of the coupled problem in the form:
Find (U, Û) ∈ X× Z such that

AΩ(U,V) +
∑
k∈NΓ

(θkel,V)Ω Aω(Û, (θ̂ke
l,0))−∑

k∈NΓ

(θkel, DV[d])Ω Aω(Û, (0, θ̂ke
l)) =(f ,V)Ω +

∑
k∈NΓ

(θkel,V)Ω (ĝ, (θ̂ke
l,0))ω−∑

k∈NΓ

(θkel, DV[d])Ω (ĝ, (0, θ̂ke
l))ω,

Aω(Û, V̂) = (ĝ, V̂)ω,

(U, θiej)Ω − (v̂, θ̂iej)ω = 0,

(DU[d], θiej)Ω + (β̂, θ̂iej)ω = 0

(37)
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for all kinematically admissible test functions (V, V̂) ∈ X∂ΩD
× Z∂ωD

and (i, j) ∈ NΓ ×
{1, 2, 3}.

We conclude this development by stating an energy result related to our variational
formulation of the coupled problem.

Proposition (work equilibration). Let U : Ω → R3 and Û ≡ (v̂, β̂) : ω → R3 × R3

be the solution pair of the coupled problem defined by the variational formulation (37) and
let

Lω(·) = Aω(Û, ·)− (ĝ, ·)ω
be the linear functional to construct the coupling reactions exerted on the shell, so that it
can be expressed as

Lω((ŵ, η̂)) = (elĤ
l
k(Û)θ̂k, ŵ)ω + (elΛ̂

l
k(Û)θ̂k, η̂)ω,

with the conjugate components Ĥ l
k(Û) and Λ̂l

k(Û) defined by (35). Then the potential
energy of the forces exerted on the solid, which is defined by

(h(Û),U)Ω − (λ(Û), DU[d])Ω = (elh
l
k(Û)θk,U)Ω − (elλ

l
k(Û)θk, DU[d])Ω,

and the potential energy of the coupling reactions given by Lω(Û) satisfy

Lω(Û) + (h(Û),U)Ω − (λ(Û), DU[d])Ω = 0. (38)

This result can be verified easily, as we obtain

Lω(Û) + (h(Û),U)Ω − (λ(Û), DU[d])Ω =Ĥj
k(Û)v̂kj + Λ̂j

k(Û)β̂k
j + hj

k(Û)Uk
j −

λj
k(Û)(DU[d], θkej)Ω,

(39)

so that invoking the conditions (33) and (36) that are included in (37) gives the desired
result. The above proposition yields corollary that when the Dirichlet constraints on ∂ΩD

and ∂ωD are homogeneous (note that a problem with nonhomogeneous constraints can
easily be transformed to a problem with homogeneous conditions), the potential energy
of the external forces

F{U, Û} ≡ (f ,U)Ω + (ĝ, Û)ω

is twice the total stored energy in the structure, since, in view of (31) and (34), we have

AΩ(U,U) + Aω(Û, Û) = (f ,U)Ω + (h(Û),U)Ω − (λ(Û), DU[d])Ω + (ĝ, Û)ω + Lω(Û)

= F{U, Û}.
(40)

That is, no perturbation of energy is associated with the coupling forces.

Implementation within Elmer software

The coupled model based on the formulation (37) has been implemented into open source
FEM software Elmer [10] in the case of certain lowest-order shell finite elements. In gen-
eral, Elmer is designed to handle multiphysics problems, with possibilities to couple a
large variety of physical models of different disciplines. The coupling is usually done by
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using a loosely coupled iteration scheme where each physical model is solved repeatedly,
with updated coupling conditions. This approach supports software modularity in a nat-
ural way, but sometimes attaining convergence may be problematic. Instead, treating all
constituent models simultaneously is well suited for problems where physical couplings are
especially strong, but this strategy is more demanding to implement, requiring additional
flexibility of software. Gradual efforts have been made to support a better construction
of such models within Elmer. The procedure to create the coupled model based on the
formulation (37) also utilizes this more recent work on building tightly coupled solvers.

Given the ability to compute the structural equations for solids and shells in their own
domains of definition, together with a procedure to calculate the scalar coefficients of the
form

(θkel, DV[d])Ω, (41)

the discrete model based on (37) can be assembled by accessing the entries of the matrices
and the right-hand side vectors which are associated with the constituent models and
needed even when the coupling of the models is not enforced. In this case, we need to
assemble the algebraic system of equations having the natural block structure[

K N
D A

] [
U

Û

]
=

[
F
G

]
, (42)

where K and A are the stiffness matrices associated with the solid and the shell, re-
spectively. Elmer now provides general utilities for the flexible creation of a block matrix
structure and an associated right-hand side vector, so that pointers to the entries of K and
A can be used when the system (42) is created. On the other hand, a special subroutine
is used to add the coupling blocks N and D in (42).

Our way to enforce the Dirichlet constraints on the coupling interface Γ is based on
assembling matrix rows having just two entries, with either of them being a diagonal
entry, so that A contains a diagonal part. Before this is done, these rows of A are defined
to have the entries which would be appropriate if non-vanishing test functions associated
with Γ were allowed. Prior to rewriting to obtain the diagonal part of A, the weighted
versions of these entries are calculated in order to insert the suitable entries into N.

To handle problems including the inertial body force −ρü, with ρ a density field, the
mass matrix of the coupled model can analogously be assembled in the block matrix form[

MKK MKA

0 MAA

]
. (43)

Again, the mass matrix MAA for the shell equations is originally computed such that it
would be appropriate if non-vanishing test functions associated with the coupling interface
Γ were allowed. When suitable continuity constraints on the inertial force terms based
on the conditions (33) are set, the shell mass matrix entries in the rows corresponding
to the nodes on Γ are used to create the coupling block MKA. After this has been done,
these rows of MAA are rewritten to have zero entries, so that the coupling constraints of
Dirichlet type can be respected in the end.

In order to enable flexible use of linear solvers, the block matrix construct used within
Elmer to represent the coefficient matrices and vectors in (42) and (43) can be converted
to the usual CRS matrix format. This causes some overhead, but no adaptations of code
are then necessary to employ existing interfaces for libraries that offer linear solvers or
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methods for eigenvalue problems. In addition, the computation of algebraic precondi-
tioners, such as incomplete LU factorizations, can be performed in the usual way. On
the other hand, if the special block matrix construct is maintained, Elmer can also use
splitting strategies (cf., [1]) based on the block structure to perform the iterative solution
of the coupled system of linear algebraic equations. This approach may enable the devel-
opment of iterative solvers where highly efficient methods such as multigrid algorithms
designed for the constituent models are reused in the solution of the coupled model.

The remaining technicalities are related to ways to estimate the scalar coefficients of the
type (41) which depend on the conjugate basis functions associated with the indices inNΓ.
A practical method to obtain these approximations would be to perform several iterative
solutions of linear systems, with the coefficient matrix being the fundamental matrix of
the solid discretization and with a suitable collection of right-hand side vectors. However,
the current implementation within Elmer does not employ such global approximations,
but averaging is applied to compute constraints which allow for the direct elimination of
the unknowns β̂i

j on Γ in a similar way as the formulation (37) does. We then conjecture
that the resulting coefficients can be used as the estimates of the values (41).

We note that Elmer can automatically generate the coupling interface Γ by using the
assumption that any shell edge Ee ⊂ Γ is also an edge of a solid element. In the first place
the unknown β̂ is tied at the centre of Ee, but assuming a constant approximation of β̂
on Ee gives two constraints of a similar content for the nodes that define Ee. Each element
in a set Ke of solid elements having Ee as an edge contributes to the nodal constraint as

αkβ̂k
i =

1

Mk

E∑
j=1

gj, (44)

where gj are different elementwise approximations of the ith component of the directional
derivative, Mk is the count of nodal constraint updates after looping over all elements
in the set Ke of the cardinality E, and an additional weight αk ensures that the weights
sum up to the unity after assembling the constraints associated with all the edges Ee ⊂ Γ.
An additional level of averaging is also possible if several shell elements share a coupling
interface edge.

Examples

To demonstrate the utility of the coupling procedure presented in this paper, we now use
the implementation available in Elmer to solve a coupled model of a straight cylindrical
shell. We note that the development of coupling schemes which give accurate results
for deformations dominated by bending effects is in general less obvious. We therefore
consider a problem where the entire shell is constrained by conditions which only prevent
rigid body motions, so that bending-dominated deformations are possible [3].

Here a boundary layer adjacent to a free edge is modelled by using a standard lowest-
order approximation based on hexahedral finite elements, whereas elsewhere we use four-
node shell finite elements, with special strain reduction operators in order to alleviate
locking. For verification purposes we also solve the same problem by using either only
shell finite elements or only solid finite elements. In order to roughly estimate the errors
of the lowest-order models, we shall also employ solid finite elements of degree p = 2.
We note that a severe locking would be expected if the problem was modelled by using
standard lowest-order finite elements of a characteristic size larger than the shell thickness.
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The shell thickness d is taken to be a parameter, whereas the length and the radius
of the shell are taken to be L = 2 and R = 1, respectively. A dimensionless thickness
is defined by t = d/R. The material properties are characterized by Poisson’s ratio
ν = 1/3, Young’s modulus E = 7.0 ·1010, and the density ρ = 2700. Eigenanalysis is then
performed by seeking only symmetric modes over a mesh representing an eighth of the
whole structure.

In the case of the coupled model, the solid mesh is confined to a layer of length δ = 2d,
so that the shortest boundary layers of characteristic length ℓ ∼ d are mainly resolved over
the solid mesh, while the boundary layers of characteristic length ℓ ∼

√
dR also extend

over the surface mesh. For the layer a hexahedral (32× 32× 4)-mesh is generated, with
four layers of elements used over the thickness, while outside this region a quadrilateral
(32× 32)-mesh is used. In the case of a pure discretization with the shell finite elements,
a similar mesh without the selective mesh extrusion over the thickness is used. On the
other hand, in the case of a pure discretization with the solid finite elements the mesh
extrusion is done over the whole computational domain. The mesh size parameter h is
the same for the solid discretization of degree p = 2, but additional degrees of freedom
are then created by associating them with the sets of edges, faces and element interiors
of the lowest-order (p = 1) mesh.

We note that since the standard lowest-order solid finite elements are used and since
the mesh resolution is not altered when the shell thickness is varied, the accuracy of the
solid discretization is expected to deteriorate as the shell thickness decreases. Although
the boundary layer mesh has a fine resolution in the axial direction to capture the expo-
nentially decaying boundary layers, this failure affects also the coupled model, since all
the models share the same mesh resolution in the angular direction. Therefore, we shall
focus on the cases where d ≥ 0.05, so that the mesh size parameter h satisfies h/d = O(1)
with respect to the variations of d. Hence, our three-dimensional discretizations should
not suffer severe locking. On the other hand, our discrete shell model would not need
such constraint on the mesh size, i.e., its behavior should be more robust as t → 0.

To begin with, Table 1 shows the eigenvalues obtained by using the different models
when t = 0.1. It is noted that the eigenvalues of two models of different types cannot
be expected to converge to the same result when the discretizations are refined and the
thickness is kept fixed, but relatively close approximations may anyhow be expected. It
should also be noted that the comparison of the results requires some care as the com-
parison of the kth eigenvalues (as listed in the ascending order) may lead to comparing
the eigenvectors which do not approximate the same characteristic mode. To avoid such
discrepancies, a visual inspection of the eigenvectors was done in order to list the eigenval-
ues so that the agreement with the characteristic modes of the second-order solid model
is obtained. Therefore, the list of eigenvalues for a specific model may not follow the
ascending order, but we shall make these exceptions clear in our discussion. We also note
that in all computations the assembly of the coupling block MKA of the mass matrix was
simplified by neglecting the inertial effects associated with the approximation β̂ on the
coupling interface Γ.

Table 1 shows that the eigenvalues of the pure shell model are notably close to those of
the second-order solid model, the average of the relative difference between the eigenvalues
being only 0.91%. The same average difference computed for the lowest-order solid model
is 5.4%. In this case the reordering of the eigenvalues was done, so we thus consider
the approximations λp=2

7 ≈ λp=1
6 and λp=2

6 ≈ λp=1
7 , where the index of the eigenvalue

is according to the original ascending order. The coupled model also needs the similar
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Table 1. Eigenvalues for the different models of a cylinder of thickness t = 0.1.

Mode Coupled Shell Solid Solid
model p=1 p=2

1 1.7172 · 105 1.6878 · 105 1.8596 · 105 1.6844 · 105
2 4.9018 · 106 4.8108 · 106 5.2819 · 106 4.7559 · 106
3 1.1393 · 107 1.1704 · 107 1.1817 · 107 1.1711 · 107
4 1.2471 · 107 1.2499 · 107 1.2996 · 107 1.2362 · 107
5 2.4327 · 107 2.4337 · 107 2.4370 · 107 2.4351 · 107
6 2.6373 · 107 2.5882 · 107 2.8254 · 107 2.5195 · 107
7 2.6295 · 107 2.6271 · 107 2.6366 · 107 2.6287 · 107
8 3.9042 · 107 3.8666 · 107 4.0920 · 107 3.7685 · 107
9 4.3954 · 107 4.4741 · 107 4.5695 · 107 4.4542 · 107
10 4.4233 · 107 4.5628 · 107 4.6653 · 107 4.5339 · 107

Table 2. Eigenvalues for the different models of a cylinder of thickness t = 0.05.

Mode Coupled Shell Solid Solid
model p=1 p=2

1 4.4388 · 104 4.2929 · 104 5.7782 · 104 4.2797 · 104
2 1.3034 · 106 1.2564 · 106 1.6889 · 106 1.2438 · 106
3 4.8747 · 106 4.7902 · 106 5.2599 · 106 4.7436 · 106
4 7.3200 · 106 7.0394 · 106 9.4319 · 106 6.8852 · 106
5 1.0313 · 107 1.0356 · 107 1.0453 · 107 1.0350 · 107
6 1.1689 · 107 1.1149 · 107 1.3541 · 107 1.0917 · 107
7 2.3838 · 107 2.2969 · 107 3.0639 · 107 2.2100 · 107
8 2.4288 · 107 2.4289 · 107 2.4320 · 107 2.4297 · 107
9 2.4608 · 107 2.4788 · 107 2.6414 · 107 2.4638 · 107
10 2.5951 · 107 2.5939 · 107 2.6034 · 107 2.5956 · 107

reordering and gives 2.1% as the average relative difference between the eigenvalues.
The similar results for the shell thickness t = 0.05 are given in Table 2. Now the

average relative difference between the eigenvalues of the second-order solid model and
those of the pure shell model is found to be 1.1%. The pure solid model of the lowest
order starts to show the growth of errors (that is, the symptoms of locking) as the average
relative difference between the eigenvalues is already 19.0%. In this case, the reordering
of the eigenvalues was done, so that the approximations λp=2

7 ≈ λp=1
11 , λp=2

8 ≈ λp=1
7 , and

λp=2
10 ≈ λp=1

8 are considered. Here the eigenvalue index is again according to the original
ascending order. We however see that all the eigenvalues of the coupled model are in
reasonable agreement with those of the second-order solid model even for the smaller
thickness t = 0.05, the average relative difference between the eigenvalues being 3.3%.
The eigenmodes computed also exhibit good visual agreement, which is illustrated in
Figure 1 by comparing the 2-norms of the displacement vectors in the case of the sixth
mode.
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Figure 1. The 2-norm of the displacement vector for the sixth mode obtained for the thickness t = 0.05
with the coupled model (the eigenvalue λ6 ≈ 1.1689 · 107) and the pure shell model (λ6 ≈ 1.1149 · 107).

A closer inspection of the results revealed that the eigenvalues tend to be more inaccu-
rate for the eigenmodes which are characterized by oscillations in the angular direction. In
addition, even for the thickness t = 0.1, some eigenvalues of the lowest-order solid model
are seen to have relatively large errors. It thus appears that the strain reduction opera-
tors used in the discrete shell model are beneficial even for a relatively thick shell. We
shall next make a closer look at how the coupled model can handle possibly unbalanced
numerical approximation errors of the constituent models. As representative cases we
consider the approximations of the first and fifth eigenmodes for which the relative differ-
ences between the respective eigenvalues of the solid models of different degree are 10.4%
and 0.079%, respectively. The fifth eigenmode is characterized by an axially changing
deformation, while the first eigenmode has the minimal number of smooth oscillations in
the angular direction, has a notable boundary layer and is also observed to be increasingly
bending-dominated when the thickness decreases.

Figures 2 and 3 illustrate axial profiles of the axial and transverse displacements, to-
gether with the axial and transverse components of the directional displacement derivative
in the direction of the negative director, obtained for the representative modes (t = 0.1)
by the pure shell model, the coupled model, and the pure solid model of the lowest de-
gree. The profiles are shown along the segment which lies on the mid-surface and which
intersects a model boundary where the symmetry conditions are imposed. In the case of
approximation over a solid mesh, the directional derivative is computed as the first order
divided difference of the displacement by using the nodes which are at equal distances
d/4 = 0.025 from the mid-surface. That is, we use a more localized approximation as
compared with the two-dimensional shell theory, where considering the difference of the
displacements of the surface points at equal distances d/2 from the mid-surface is more
natural.

We first note that in the case of the fifth mode the solutions of the pure shell model
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Figure 2. The profiles of the axial and transverse displacements, together with the axial and transverse
components of the directional displacement derivative in the direction of the negative director, for the
first eigenmode (t = 0.1) given by the pure shell model (dotted lines), the coupled model (solid lines),
and the pure solid model of the lowest degree (dashes lines).
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Figure 3. The profiles of the axial and transverse displacements, together with the axial and transverse
components of the directional displacement derivative in the direction of the negative director, for the
fifth eigenmode (t = 0.1) given by the pure shell model (dotted lines), the coupled model (solid lines),
and the pure solid model of the lowest degree (dashes lines).
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and the pure solid model are close to each other, whereas the axial displacement and
the transverse component of the directional displacement derivative (the negative of the
transverse normal strain) obtained for the first mode have notable differences. These
discrepancies, which also occur at the point corresponding to coupling interface (the axial
coordinate value z = 0.8), give a likely explanation for the clear imperfections which are
seen in the first eigenmode of the coupled model. Overall, in spite of its discontinuity,
the transverse normal strain of the coupled model is closer to that given by the pure
shell model, whose eigenvalue differs from that of the second-order solid model only by
0.2%. In the case of the coupled model this relative difference is 1.9%, which should be
compared with the corresponding difference 10.4% of the pure solid model. On the other
hand, in the case of the fifth mode we see a significant discrepancy only in the transverse
normal strain. This imperfection seems to be a local effect decaying in the length scale
∼ d. Nevertheless, all the models give very close approximations of the fifth eigenvalue
obtained by the second-order solid model.

A satisfactory explanation for the higher sensitivity of the coupled approximation of
transverse normal strain seen in the above examples is left as an open question. We how-
ever mention that our local approximations to avoid the global computation of the con-
jugate basis functions might cause some effects. Some discrepancies might also originate
from shell theories. In particular, the development of transverse shear strains resulting
from (6) under the constraint (7) is not complete, since both the neglected tangential
components of ψ and the tangential derivatives of the component β ·a3, which equals the
negative of the transverse normal strain, contribute to the first-order terms of transverse
shear strains in the thickness coordinate y3. Thus, the shell model we have employed may
not be able to give a sufficient description of transverse shear deformations occurring over
the shortest O(t) scales. In addition, some effects might also originate from our simplified
implementation of the shell model which is best fitted for cases t ≪ 1, the variational
formulation being simplified by neglecting O(t) terms.

The above examples represent cases where the solid part is added in order to fully
account for three-dimensional effects in a boundary layer. These examples clearly demon-
strate that such simulations require special three-dimensional discretizations which can
alleviate effects of locking related to thin bodies. Otherwise, unbalanced numerical ap-
proximation errors of the constituent models are to be expected, possibly leading to
imperfections, although the shell might be so thick that severe locking is not an issue. To
conclude, we finally consider a model which represents another problem of interest where
a relatively thick solid is coupled with a shell of smaller thickness. In such cases the use
of the standard low-order solid finite elements is generally a more realistic option. Our
coupled model is similar to that for the shell thickness t = 0.1, but we now decrease the
shell thickness over the surface model to the value t = 0.05, so that the solid part acts as
a stiffener. The eigenvalues of this model are given in Table 3 and they may be compared
with the eigenvalues given in Tables 1 and 2. The stiffening effect is also illustrated in
Figure 4 where we compare the second eigenmode obtained when the cylinder is of uni-
form thickness t = 0.05 (the eigenvalue λ2 ≈ 1.2564 · 106) and when it has the stiffener
(λ2 ≈ 2.0639 · 106).

Concluding remarks

Our method for mixed-dimensional coupling between shells and solids presented in this
paper is surprisingly simple, as it does not depend on additional computational parame-
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Table 3. Eigenvalues for the coupled model of a cylinder of thickness t = 0.05 with a stiffener ring of
thickness t = 0.1.

Mode Eigenvalue

1 8.6201 · 104
2 2.0639 · 106
3 6.4936 · 106
4 8.5849 · 106
5 8.8810 · 106
6 2.1340 · 107
7 2.3283 · 107
8 2.5889 · 107
9 2.6212 · 107
10 2.7894 · 107

Figure 4. The 2-norm of the displacement vector for the second mode obtained for a cylinder of thickness
t = 0.05, with a stiffener ring of thickness t = 0.1 (left) and without the stiffener (right).
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ters, an augmentation of the potential-energy functional by introducing new unknowns,
or computations over auxiliary meshes. Despite this simplicity, our method has been
shown to be consistent with respect to the energy principle, so that the property of work
equilibration, which has also been taken to be a key design principle in the derivation of
constraint equations in [11], is fully satisfied.

Here we have assumed mesh conformity so that the intersection of the solid with the
mid-surface of the shell can be represented in terms of the edges of the solid mesh. In
this case, the assumption about mesh conformity is far less restrictive as compared with
the alternative case of purely three-dimensional modelling, where generating a conform-
ing solid mesh would not usually be practical and using special methods such as mortar
finite elements would be a necessity in order to perform the coupling in very thin inter-
faces. We also note that a faithful implementation of our method depends on some global
computations over the solid mesh to obtain the conjugate basis functions associated with
the one-dimensional coupling interface. However, our current implementation avoids such
computations by assuming the validity of certain local approximations. Although the
simplified implementation has been show to give good results in our computational ex-
periments, the validity of these approximations should be investigated in more detail with
respect to the version requiring the global computation, but we leave this comparison to
be a subject of a further study.
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