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Summary  This study indicates the analysis of functionally graded carbon nanotube reinforced 
composite (FG-CNTRC) plates using a four-node quadrilateral element related to the C0-type of 
Reddy’s third-order shear deformation theory (C0 HSDT) and cell-based smoothed strains (CS) 
strategy. Reddy’s theory is surely taking the advantages and desirable properties of the third-
order shear deformation theory. Besides, FG-CNTRC plates with advanced material properties 
are changed from the bottom to top surface with four kinds of carbon nanotube (CNTs). 
Numerical results and comparison with other reference solutions suggest that the benefits of the 
present element are accuracy and efficiency in analysis of FG-CNTRC plates. 
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Introduction 

In the past few decades, carbon nanotubes (CNTs) with their outstanding features have 

made a big step forward for materials science. They have some advantages related to 

their remarkable mechanical, thermal and electrical properties [1–7]. From the structural 

review, their material properties are listed as high strength, low density, stiffness, etc. 

And they become a good candidate for composite structures. For this reason, the 

behaviors of FG-CNTRC plates need to be studied particularly.  

Beside developing and manufacturing novel advanced engineering materials, many 

theories have been introduced into analyses from thin to thick plates such as the 

classical plate theory (CPT), the first-order shear deformation theory (FSDT), the 

higher-order shear deformation theory (HSDT), the layer-wise theory (LWT) and 

variable kinematics models. The FSDT is often applied because of its simplicity and 
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low computational cost [8–10]. But we may easily recognize that the third-order shear 

deformation plate theories are the accurate theories and effective due to the quadratic 

variation of the transverse shear strains and stresses along the thickness of plate as well 

as the shear locking free [11]. On the other hand, numerical methods have been 

expanded for the analysis of composite structures as given by authors [12–20] and so on. 

Specifically, the free vibration analysis of functionally graded carbon nanotube 

reinforced composite (FG-CNTRC) conical shell was carried out by using element-free 

kp-Ritz method. Based on the first-order shear deformation shell theory, the 

approximate displacement field was expressed by the shape function of the nuclear 

particle as in reference of author Xiang [12]. Author Farzam and colleague [13] 

investigated the thermal and mechanical buckling analysis of functionally graded carbon 

nanotube reinforced composite (FG-CNTRC) plates by using isogeometric analysis 

(IGA) based on modified couple stress theory. Besides, a 3D EFG method based on the 

Strain-Rotation decomposition theorem was presented to investigate the nonlinear 

bending behavior of functionally graded carbon nanotube reinforced composite (FG-

CNTRC) plates. Due to its overcoming the drawbacks of classical finite element 

methods, Strain-Rotation decomposition theorem provided a dependable theoretical 

support for the nonlinear analysis as follows author Zhou [14]. Moreover, an other 

analysis was presented for functionally graded carbon nanotube-reinforced composite 

(FG-CNTRC) plates using the element-free kp-Ritz method by Lei and partners [15]. 

By means of the variational differential quadrature (VDQ) method, author Ansari [16] 

analyzed the free vibration characteristics of embedded functionally graded carbon 

nanotube-reinforced composite (FG-CNTRC) spherical shells on Pasternak foundation. 

Furthermore, Chau-Dinh and partners [17] developed a new three-node triangular plate 

element to analyze laminated composite plates based on the higher-order shear 

deformation theory (HSDT). Originating from the MITC3+ element, the displacement 

fields based on the HSDT were calculated by simple linear functions of the triangular 

element with three nodes and a cubic supplemented function related to a node located at 

the centroid of this element. The shear strain fields in transverse direction were 

estimated according to the MITC3+ element. The in-plane strain fields were improved 

by edge-based smoothed (ES) strain method. A cell-based smoothed discrete shear gap 

method (CS-FEM-DSG3) using three-node triangular element was recently proposed 

for the static and free vibration analyses of carbon nanotube reinforced composite 

(CNTRC) plates by Truong-Thi and colleagues [18]. The CS-FEM-DSG3 element was 

enhanced from the original DSG3 element by using smoothing technique to modify the 

stiffness of the DSG3 element while it still received the locking-free speciality of the 

former. In the most basic way, author Zhu [19] presented bending and free vibration 

analyses of thin-to-moderately thick composite plates reinforced by single-walled 

carbon nanotubes using the finite element method based on the first order shear 

deformation plate theory. Mostafa [20] examined the free vibration characteristics of 

plates containing a cutout that were reinforced with uniform or nonuniform distribution 

of carbon nanotubes. The first-order shear deformation plate theory was used to 

estimate the kinematics of the plate and the solution method was based on the Ritz 

method with Chebyshev basis polynomials, etc. 

Going back to FSDT with clear mentions, finite element formulation only requires C0 

continuous shape functions as well as the weak-form equations only require the first 
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derivative of displacement field. However, shear locking phenomenon occurs when the 

thickness-to-length ratio of plate gradually approaches zero and it can be handled using 

reduced integration. With the higher-order shear deformation theory (HSDT), we 

recognize that it is commonly used because it gives accurate transverse shear stresses as 

well as does not need shear correction factors. But with low-order finite elements such 

as four-node quadrilateral element, the requirement of C1-continuous approximation for 

the displacement fields in the higher-order shear deformation theory causes some 

impediments. To overcome these shortcomings, the HSDT is revised form from C1 to 

C0 continuity for displacement fields (C0-HSDT). In this strategy, two other variables 

are added, and thence the first derivative of transverse displacements is only requested. 

From above reasons, a quadrilateral element with four nodes and seven degrees-of-

freedom per node related to C0-type of Reddy’s third-order shear deformation theory 

and cell-based smoothed strains, is introduced for analyses of the FG-CNTRC plates. 

Based on the idea of using the high-order shear deformation theory through the C0-type, 

the achieved results are given completely reliable without any regrettable phenomena. 

Furthermore, based on both classical and non-classical plate models suggested for 

small-scale structures [21, 22], the method proposed in this paper can be further 

developed in the future. By changing the material from CNTRC to GPLs or others [8], 

this plate model can be applied in the next research with a high expectation of stability 

and convergence. 

This paper is organized as follows. The material properties of functionally graded 

carbon nanotube-reinforced composite (FG-CNTRC) plate, C0-type of Reddy’s third-

order shear deformation theory, the finite element formulation for plate is briefly 

introduced in Section 2. To highlight the effectiveness of this element in analyzing the 

behaviors of FG-CNTRC plate structures, several numerical examples are thoroughly 

explored in Section 3. Finally, Section 4 has some logical conclusions. 

Formulations 

Material properties 

Let’s consider a FG-CNTRC plate with geometry as plotted in Figure 1. The top and 

bottom planes of plate are to be fully ceramic and metallic. The middle plane of 

structure is xy-plane, while the z-axis is depicted in Figure 1a.  
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Figure 1. (a) FG-CNTRC plate with (b) four types; UD, FG-V, FG-O & FG-X. 
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Four types, UD, FG-V, FG-O and FG-X, of CNTs are shown in Figure 1, which can 

be expressed as 

( )

( )
( )

( )

( )

( )

(UD)

1 2 / FGV

2 1 2 / FGO

FGX2 2 /

C

C

C
C

C

V

z h V
V

z h V

z h V












+
= 

−




 (1) 

with 

( ) ( )/ /

C
C

C C m C m C

V


     

 =
+ −

 (2) 

where C  and m  are the density of CNTs and the matrix, C  is the mass fraction of 

the CNTs. Based on the rule of extended mixtures, the material properties of CNTs are 

written as 

 11 1 11

C

C m mE V E V E= +  (3) 

2 22 22/ / /C

C m mE V E V E = +  (4) 

3 12 12/ / / GC

C m mG V G V = +  (5) 

Gm  and mE  recall the shear modulus and Young’s modulus of the isotropic matrix; 

12

CG  and 11

CE , 22

CE  are called the shear modulus and Young’s modulus of CNTs, 1 , 2  

and 3  are efficiency parameters of CNTs as introduced in Table 1. mV  and CV  are 

called the matrix and CNT volume fractions and note that 1m CV V+ = . Similarly, 

Poisson’s ratio 12  is given as follows: 

12 12

C

C m mV V  = +  (6) 

   
 

Table 1. The efficiency parameters of CNTs. 

    CV 
    

1     
2     

3  

0.11 0.149 0.934 0.934 

0.14 0.150 0.941 0.941 

0.17 0.140 1.381 1.381 

 

C
0

-type higher-order shear deformation theory 

Let Ξ be the domain associated with the middle plane of the plate. The displacement 

field can be described in terms of C0-type with seven unknown variables as follows 

            ( ) ( )3 3

0, , b s

x xu x y z u z rz rz = + + +  (7) 

            ( ) ( )3 3

20

4

3
, ,

2 2
y y
b srz rz r

h

h h
v x y z v z z 

−
+ + == + −    (8) 

            ( ) 0, ,w x y z w=  (9) 

It can be seen that the above seven unknowns include three axial and transverse 
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displacements 
0u , 

0v , 
0w , four rotations b

x , b

y  and s

x , s

y  due to the bending and 

shear effects. Based on the small strain assumptions, the strain-displacement relations 

can be provided 

( )

( )

( ) ( )

( ) ( )( )

( ) ( )( )

3

0, , , ,

3

0, , , ,

3

0, 0, , , , , , ,

2

,

2

,

3

3

b s b

x x x x x x x

x
b s b

y y y y y y y
y

b b s s b b

xy y x x y y x x y y x x y y x

b s b
yz

y y y y

b s bxz
x x x x

u z z r

v z z r

u v z z r

w z r

w z r

  


  

      

   


  

 + + +
   
   + + +
   
   

+ + + + + + +   
   

+ + +   
   
  + + +  

=  (10) 

in matrix form 

(0) (1) (3)

2 3

(2)(0)
z z z

          
+ +         

         

0ε ε ε ε
=  + 

γ 0 γ 0γ
 (11) 

with

          

, , ,0,

(0) (1) (3)

0, , , ,

0, 0, , , , , , ,

, ,

b s b

x x x x x xx

b s b

y y y y y y y

b b s b s b
y x x y y x x y x y y x y x

u

v r

u v

  

  

     

   + 
        

= = = +     
     

+ + + + +        

ε ε ε  
(12) 

,(0) (2)

,

, 3

b s b

y y y y

b s b

x x x x

w
r

w

  

  

   + +   
= =   

+ +     

γ γ

 

(13) 

The constitutive equation is expressed 

(0) (1) 3 (3)(z)( z z )m= + +σ D ε ε ε  (14) 

( )( )(0) 2 (2)zs z=τ D γ + γ

 

(15) 

in which 

  
T T

,x y xy yz xz       = =   σ τ               (16) 

( )
( )

( )

( )

( )

( )( )
2

1 0

1 0
1

0 0 1 / 2

m

v z
E z

z v z
v z

v z

 
 

=  −
 − 

D  (17) 

( )
( )

( )( )
1 0

0 12 1
s

E z
z

v z

 
=  

+  
D  (18) 

The normal and shear forces, bending moments, higher-order values of moments and 

shear forces can be presented in matrix form as follows 
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(0) (0)

(1) (1)

1(3) (3)

2(0) (0)

(2) (2)

ˆ ˆ

ˆ ˆ

     
     
             = =              

      
             

ε εA B E 0 0N

B D F 0 0 ε εM
D 0

E F H 0 0P ε ε
0 D

Q 0 0 0 A B γ γ

R 0 0 0 B D γ γ

 (19) 

with 

( ) ( )
/2

2 3 4 6 ,

- /2

,  ,  ,  ,  ,  1,  ,  ,  ,  ,  ( )

h

i j

m

h

z z z z z z dz= A B D E F H D  (20) 

( ) ( )
/2

2 4 ,

- /2

ˆ ˆ ˆ,  ,  1,  ,  ( )

h

i j

s

h

z z z dz= A B D D  (21) 

For the static analysis, a weak form of plates can be given as: 

1 2

T Td d wpd  
  

 +  =   ε D ε γ D γ  (22) 

where p is the distributed load in transverse direction. For the free vibration analysis, a 

weak form of plates can be derived from the following dynamic equation 

1 2

T T Td d d  
  

 +  =   ε D ε γ D γ u mu  (23) 

 

Four-node quadrilateral element 

Discretize the domain Ξ of plates into Nc finite elements and Nn is called the total 

number of nodes. The displacement field u of the standard FEM using the quadrilateral 

element with four nodes can be approximated by 

 

nN

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

i

i

i

i i

i

i

i

i

N

N

N

N

N

N

N

=

 
 
 
 
 
 
 
 
 
 
 

u= q  (24) 

Ni is the shape function and qi is the displacement vector of the nodal degrees of 

freedom of u associated to the ith node. The strain can be rewritten 

( )1 2 3 i

i

= + +ε B B B q  (25) 

( )4 5 i

i

= +γ B B q  (26) 

 in which 
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,

1 ,

, ,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

i x

i y

i y i x

N

N

N N

 
 

=  
 
 

B  (27) 

,

2 ,

, ,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

i x

i y

i y i x

N

N

N N

 
 

=  
 
 

B  (28) 

, ,

3 , ,2

, , , ,

0 0 0 0 0
4

0 0 0 0 0
3

0 0 0

i x i x

i y i y

i y i x i y i x

N N

N N
h

N N N N

 
 

= −  
 
 

B  (29) 

,

4
,

0 0 0 0 0

0 0 0 0 0

i y i

i x i

N N

N N

 
=  
 

B    (30) 

5 2

0 0 0 0 04

0 0 0 0 0

i i

i i

N N

N Nh

 
= −  

 
B  (31) 

From the CS strategy, a quadrilateral element domain ΞC is further divided into nC = 2 

smoothing cells as Figure 2. By using the strain smoothing operation for each 

smoothing cell, the generalized strain field is presented 

( )( ) ( )

C

C Cx x x x d


=  −    
(32) 

Cx  is an arbitrary point to determine strains. The smoothed strain based on the 

divergence theorem can be achieved with  

4

1

1

( ) 0 0 0 0 0 0
1

0 ( ) 0 0 0 0 0

( ) ( ) 0 0 0 0 0

G
i x

G C
i y

C m G G
i y i x

N x n

N x n l
A

N x n N x n
=

 
 

=  
 
  

B  (33) 

4

2

1

0 0 0 0 0 ( ) 0
1

0 0 0 0 0 0 ( )

0 0 0 0 0 ( ) ( )

G
i x

G C
i y

C b G G
i x i x

N x n

N x n l
A

N x n N x n
=

 
 

=  
 
  

B    (34) 

4

3 2
1

0 0 0 ( ) 0 ( ) 0
4

0 0 0 0 ( ) 0 ( )
3

0 0 0 ( ) ( ) ( ) ( )

G G
i x i x

G G C
i y i y

b G G G G
i y i x i y i x

N x n N x n

N x n N x n l
h

N x n N x n N x n N x n
=

 
 

= −  
 
  

B  (35) 

by following [23, 24], in which Gx  and Cl  are the Gauss point and the length of each 

line segment of the boundary, xn  and yn  are two components of the unit outward 

vector normal to each edge, CA  is the area of the smoothing cell. 

Completely similarly to literature [23–25], the element stiffness is then given 
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2
T T T T T T T T T

1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3

1

T T T T

4 4 4 5 5 4 5 5

( )

ˆ ˆ ˆ ˆ( )                                                                            (36)

C

C

n

C

d

=

=



= + + + + + + + +

+ + + + 





K B AB B BB B EB B BB B DB B FB B EB B FB B HB

B AB B BB B BB B DB

 

 

 
 
 

For static analysis 

Kq = F  (37) 

with  

= d


F pN  (38) 

For free vibration analysis 

2( ) =K - M q 0  (39) 

where 

= T d


M N mN  (40) 

And m, by following the details in [26, 27], can be calculated from matrix L given as 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0 0 0

3 3

3 3

rz z + rz

rz z + rz

 
 

=  
 
 

L  (41) 

 

(1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

(1/2,1/2,0,0)

(0,0,1/2,1/2)

(1/2,0,0,1/2) (0,1/2,1/2,0)

(0,0,1/4,3/4)
(0,0,3/4,1/4)

(3/4,1/4,0,0)
(1/4,3/4,0,0)

(1/4,1/4,1/4,1/4)

 

Figure 2. The subdivision of a quadrilateral element into nC = 2 cells and the values of shape 

functions at nodes. 

Numerical results 

Verification 

Firstly, the square plate as shown in Figure 3 with two kinds of boundary condition as 

simply supported (SSSS) and clamped (CCCC) under the change of the length to 

thickness ratio a/h = 10, 100, 1000, 10000 is analyzed. It is subjected to a uniformly 

distributed load q with material properties such as E = 1.092 MPa and ν = 0.3. More 

clearly, the boundary conditions are defined as follows:  
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Clamped (C):  0s b s b

o o o x x y yu v w    = = = = = = = ;  

Simply supported (S): for left and right edges: 0s b

o o x xv w  = = = =
  

                  for upper and lower edges: 0s b

o o y yu w  = = = =  

The normalized central deflection 3 4 2(100 ) / [12 (1 )]cw Eh w qa = −  is presented in 

Table 2 and then compared with the exact solution in literature [28] as shown in Figure 

4. Figure 4 shows the relative errors with 6 x 6, 8 x 8, 10 x 10, 12 x 12 and 14 x 14 

meshes for (SSSS/CCCC) boundary condition and ratio a/h = 10, 100, 1000 and 10000. 

Based on changing the ratio a/h from 10 to 10000 and the results gradually converge, 

we can say that the proposed element overcomes the shear locking phenomenon. 

The author continues to verify the reliability of the proposed element through various 

examples related to FG-CNTRC plate structures. Unless stated otherwise, material 

properties of matrix, PmPV, are expressed to be 2.1mE Gpa= , 0.34m =  at the room 

temperature, and the reinforcements (10,10) SWCNTs are given by 11 5.6466CE Tpa= , 

22 7.08CE Tpa= , 12 1.9445CG Tpa= , 12 0.175C = . In addition, 12 13 23G G G= =  is assumed in 

this study.   

 

 

Figure 3. A square plate under uniformly distributed load. 

Table 2. The normalized central deflection of the (SSSS/CCCC) square plate. 

*w   (SSSS) 

Mesh 6 x 6 8 x 8 10 x 10 12 x 12 14 x 14 

a/h = 10 0.428705 0.428053 0.427756 0.427607 0.427517 

a/h = 100 0.406833 0.406661 0.406582 0.40654 0.406515 

a/h = 1000 0.406614 0.406447 0.40637 0.406329 0.406305 

a/h = 10000 0.406612 0.406445 0.406368 0.406327 0.406303 
*w   (CCCC) 

Mesh 6 x 6 8 x 8 10 x 10 12 x 12 14 x 14 

a/h = 10 0.149973 0.149973 0.150268 0.150302 0.150256 

a/h = 100 0.126546 0.126640 0.126684 0.126716 0.126731 

a/h = 1000 0.126300 0.126382 0.126433 0.126461 0.126479 
a/h = 10000 0.126297 0.126379 0.126430 0.126459 0.126477 

 

Bending analysis 

The static bending of an FG-CNTRC plate under uniformly distributed load 
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( )5 210 /q N m=
 
with three values of CNTs volume fraction ( 0.11/ 0.14 / 0.17CV  = ) is 

studied in this example. Table 3 and Figure 5a compare the normalized central 

deflection of the (SSSS) FG-CNTRC square plates with the volume fraction of CNTs 

0.17CV  =  and the length-to-thickness ratio a/h = 50 by five different methods, 

including commercial software package Ansys [19], CS-DSG3 [18], IGA [18], 

analytical [6] and the proposed element. Table 4 also presents the normalized central 

deflection for the FG-CNTRC square plates with the length-to-thickness ratio a/h = 20 

and three values of the volume fraction of CNTs under two boundary conditions (SSSS) 

& (CCCC) in comparison with those of the CS-DSG3 [18] and the IGA’s results [18]. It 

is observed that the present results match well with other solutions. It is also found that 

an increase in the volume fraction CV   of CNTs leads a decrease in the normalized 

central deflection of FG-CNTRC plates. With types FG-O and FG-X, the FG-CNTRC 

plate have the smallest and greatest stiffness because of the greatest and smallest 

deflections of them. Furthermore, Figure 5b illustrates the approximation among three 

methods’ results for FG-CNTRC plate with 0.11CV  = .  

 

  

  
Figure 4. The relative error of the normalized deflection. 

 

The effects of CNT volume fraction and length-to-thickness ratio a/h on the 

normalized central deflection for full types of FG-CNTRC square plates are presented in 

Table 5. The solutions of this element are compared with other results related to the 

commercial software package Ansys [19] as well as the standard FEM in [19]. It can be 

seen that three groups of results match very well. The slight difference in results may be 
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due to different approaches to solving the same problem. In some cases, the results 

obtained from the paper are closer to the analytical solutions than other results, for 

example, obtained from the IGA as shown in Table 3. Once again, it is found that the 

centric deflection of the plates is greatly influenced by the change in volume fraction of 

CNT. Specifically, this deflection will decrease to 30% when only 6% of the volume 

fraction of CNT is increased. Note that the central deflections of two types FG-V and 

FG-O plates are larger than those of two types UD and FG-X though all types of plates 

have the same mass fraction of the CNT. 

 
Table 3. Comparison of normalized central deflection for the (SSSS) FG-CNTRC square 

plate with 0.17CV  = . 

Types Ansys CS-DSG3 IGA Analytical Present 

FG-X 0.5141 0.5144 0.5126 0.5156 0.5159 
FG-O 1.4110 1.4153 1.4426 1.4120 1.4193 

FG-V 1.0810 1.0834 1.1010 1.0820 1.0807 

UD 0.7521 0.7524 0.7588 0.7523 0.7538 

 

 

 
(a) SSSS, 0.17CV  =  

 
(b) SSSS, 0.17CV  =  

Figure 5. The comparison of normalized central deflections in the FG-CNTRC plates 

under a uniform load. 
 

By changing the distribution of reinforcements, the stiffness of plates can be affected, 

and this action is expected to get the desired stiffness of these structures in reality. 
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Furthermore, if these reinforcements are distributed on the bottom or top surface, the 

plates will achieve better stiffness than in other cases. This is an important comment to 

help the engineer determine a specific development direction with specific 

characteristics for each product created. 

According to Figure 6, the normalized central axial stresses ( )2 2/xx xxh q a =  of 

FG-CNTRC square plates along thickness direction with length-to-thickness ratio a/h = 

50 and CNT volume fraction 0.17CV  =  based on the suggested element are collated 

with the results of [19]. Figure 6a under boundary condition (CCCC) as well as Figure 

6b under boundary condition (SSSS) show that the paper’s results match well with other 

results [19]. The central axial stress distribution in four types UD, FG-O, FG-V and FG-

X CNTRC plates will differ as shown throughout the thickness. The axial stress equals 

zero at the bottom of FG-V CNTRC plate as well as the value of this quantity equals 

zero on both the top and bottom surface of the FG-O CNTRC plate. 

 

  

(a) a/h = 50, 0.17CV  = , (CCCC) (b) a/h = 50, 0.17CV  = , (SSSS) 

Figure 6. The normalized central axial stresses in the FG-CNTRC plates under a uniform 

load. 

 

Free vibration analysis 

In this section, the efficiency and accuracy of this method for studying natural 

frequencies of FG-CNTRC plates are verified. The geometric and material properties of 

this structure are used similarly to those in above section. The normalized natural 

frequency is given 2 / /m ma E h  = . These values obtained by the proposed element 

and other methods are illustrated in Figure 7 and shown in Tables 6 & 7. It is observed 

that the present results match well with other solutions from [18, 19] for IGA and FEM 

strategies. 

Finally, the normalized natural frequencies 2 / /m ma D h  =  of FG-CNTRC 

plates with central cutout as shown in Figure 8 are calculated, with Dm is called the 

flexural rigidity of a plate made from the polymeric matrix.  

Tables 8 & 9 give the first three frequencies of CNTRC square plates with side-to-

thickness ratio a/h = 20. They are connected with CCCC and SSSS plates, respectively. 
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The volume fraction of CNTs is taken as 0.17CV  = . In each case, the frequencies are 

calculated for three different perforation sizes and four different graded patterns of 

CNTs. It can be found that, similar to the case of plates without a cutout, in plates with a 

hole, FG-X type also has the highest fundamental frequency as well as FG-O type has 

the lowest. The effect of hole size on fundamental frequency is easily discernible. For 

example, in CCCC plates, the fundamental frequency of a plate increases when the hole 

size increases from a1/a = b1/b = 0.1 to 0.3 and 0.5. Moreover, Tables 8 & 9 show that 

the approximation of results from two different ways like the presented method and the 

method related to Chebyshev polynomials as [20] can be achieved in this paper. Figure 

9 describes the first six mode shapes of FG-CNTRC square plate with centric cutout 

a1/a (b1/b) = 0.5, length to thickness ratio a/h = 20 as well as CCCC boundary condition, 

respectively.  

 

  
(a) 0.11CV  = , a/h = 20, UD (b) 0.11CV  = , a/h = 20, FG-V 

  
(c) 0.11CV  = , a/h = 20, FG-X (d) 0.11CV  = , a/h = 20, FG-O 

Figure 7. The comparison of normalized natural frequencies in the FG-CNTRC plates  

under CCCC boundary condition, 0.11CV  = , a/h = 20 & UD. 
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a

a1

b b1

 
Figure 8. The FG-CNTRC plates with centric cutout. 

 

   

 
  

# 1 # 2 # 3 

   

# 4 # 5 # 6 
Figure 9. The first six mode shapes of (CCCC) FG-CNTRC square plate with a centric 

cutout, ratio a/h = 20 and a1/a (b1/b) = 0.5. 

Conclusion 

In this paper, the proposed element is given and successfully applied to bending and free 

vibration analysis of FG-CNTRC plate in the framework of the C0-HSDT model and 

cell-based smoothed strains. This C0-HSDT model supplies convergent results without 

shear correct factors. It is also noted that this element related to the C0 type of HSDT 

only uses bilinear function approximations to analyze structures. The proposed element 

is shown to be free of shear locking and numerical results are presented in this paper 

approximately with other solutions from references. 



 

15 

 

Table 4. The comparison of normalized central deflection for the FG-CNTRC square plates with two boundary conditions (SSSS) & (CCCC) and 

three values of CV   

CV 
 Types 

SSSS CCCC 

CS-DSG3 IGA Present CS-DSG3 IGA Present 

0.11 

FG-X 0.02664 0.02594 0.02701 0.01114 0.01016 0.01123 

FG-O 0.06116 0.06179 0.06254 0.01824 0.01747 0.01938 

FG-V 0.04846 0.04854 0.04802 0.01557 0.01472 0.01499 

UD 0.03589 0.03551 0.03635 0.01302 0.01205 0.01317 

0.14 

FG-X 0.02214 0.02140 0.02259 0.00999 0.00910 0.01014 

FG-O 0.05013 0.05040 0.05139 0.01565 0.01490 0.01663 

FG-V 0.03976 0.03962 0.03933 0.01352 0.01270 0.01295 

UD 0.02955 0.02900 0.02996 0.01150 0.01056 0.01162 

0.17 

FG-X 0.01715 0.01675 0.01755 0.00707 0.00749 0.00725 

FG-O 0.03995 0.04031 0.04065 0.01175 0.01131 0.01232 

FG-V 0.03153 0.03166 0.03126 0.00999 0.00951 0.00963 

UD 0.02324 0.02300 0.02353 0.00833 0.00873 0.00843 
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Table 5. The effects of length-to-thickness ratio a/h and volume fraction of CNT on the normalized central deflection for full types of FG-

CNTRC square plates with two boundary conditions (SSSS) & (CCCC). 

CV 
 a/h Type 

SSSS CCCC 

Ansys FEM Present Ansys FEM Present 

0.11 

10 

FG-X 0.00318 0.00318 0.00315 0.00210 0.00211 0.00199 

FG-O 0.00522 0.00523 0.00544 0.00251 0.00251 0.00262 

FG-V 0.00446 0.00446 0.00426 0.00235 0.00235 0.00213 

UD 0.00374 0.00374 0.00373 0.00223 0.00223 0.00212 

20 

FG-X 0.02703 0.02701 0.02701 0.01150 0.01150 0.01123 

FG-O 0.06136 0.06155 0.06254 0.01856 0.01860 0.01938 

FG-V 0.04876 0.04879 0.04802 0.01591 0.01593 0.01499 

UD 0.03629 0.03628 0.03635 0.01338 0.01339 0.01317 

50 

FG-X 0.79150 0.79000 0.79176 0.19000 0.18940 0.18946 

FG-O 2.15000 2.15700 2.16510 0.47050 0.47190 0.47788 

FG-V 1.65200 1.65300 1.65016 0.36530 0.36490 0.35898 

UD 1.15500 1.15500 1.15720 0.26180 0.26180 0.26108 

0.14 

10 

FG-X 0.00284 0.00284 0.00283 0.00198 0.00198 0.00187 

FG-O 0.00451 0.00453 0.00469 0.00231 0.00231 0.00238 

FG-V 0.00389 0.00389 0.00368 0.00218 0.00218 0.00198 

UD 0.00331 0.00330 0.00328 0.00209 0.00209 0.00196 

20 

FG-X 0.02258 0.02256 0.02259 0.01035 0.01036 0.01014 

FG-O 0.05053 0.05070 0.05139 0.01600 0.01604 0.01663 

FG-V 0.04021 0.04025 0.03933 0.01388 0.01390 0.01295 

UD 0.03002 0.03001 0.02996 0.01188 0.01188 0.01162 

50 

FG-X 0.62840 0.62710 0.62656 0.15660 0.15600 0.15709 

FG-O 1.73200 1.73800 1.73864 0.37970 0.38050 0.38386 

FG-V 1.32500 1.32600 1.31752 0.29580 0.29550 0.28858 

UD 0.91820 0.91750 0.91617 0.21310 0.21310 0.21235 

… 
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… 

0.17 

10 

FG-X 0.00201 0.00201 0.00203 0.00132 0.00132 0.00127 

FG-O 0.00337 0.00338 0.00347 0.00159 0.00160 0.00163 

FG-V 0.00286 0.00286 0.00274 0.00148 0.00149 0.00137 

UD 0.00239 0.00239 0.00239 0.00141 0.00141 0.00135 

20 

FG-X 0.01738 0.01737 0.01755 0.00729 0.00729 0.00725 

FG-O 0.04007 0.04020 0.04065 0.01195 0.01198 0.01232 

FG-V 0.03171 0.03174 0.03126 0.01020 0.01021 0.00963 

UD 0.02349 0.02348 0.02353 0.00856 0.00856 0.00843 

50 

FG-X 0.51410 0.51320 0.51590 0.12270 0.12230 0.12319 

FG-O 1.41100 1.41600 1.41929 0.30790 0.30850 0.31129 

FG-V 1.08100 1.08200 1.08066 0.23860 0.23840 0.23481 

UD 0.75210 0.75150 0.75380 0.16990 0.16980 0.16945 

 

 

Table 6. The first six frequencies of FG-CNTRC square plates with 0.11CV  = , CCCC boundary condition and ratio a/h = 20 

Mode 
UD FG-V FG-X FG-O 

FEM IGA Present FEM IGA Present FEM IGA Present FEM IGA Present 

1 28.400 30.391 28.770 26.304 27.709 27.244 30.421 32.901 30.916 24.486 25.592 24.171 

2 33.114 34.828 33.582 31.496 32.651 32.465 35.036 36.966 35.584 29.795 30.931 29.781 

3 44.559 45.827 46.295 43.589 44.377 45.749 46.480 47.379 48.220 41.895 43.202 43.444 

4 59.198 64.011 61.003 56.249 61.232 59.705 61.980 65.023 64.067 53.557 57.724 53.149 

5 61.851 65.386 63.311 59.221 63.176 62.230 64.562 68.983 66.263 56.617 60.742 56.099 

6 63.043 67.826 68.440 62.608 63.996 68.375 65.174 71.200 70.488 60.719 62.455 64.523 
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Table 7. The first six frequencies of FG-CNTRC square plates with 0.14 & 0.17CV  = , CCCC boundary condition and a/h = 20 

CV   Mode 
UD FG-V FG-X FG-O 

FEM IGA Present FEM IGA Present FEM IGA Present FEM IGA Present 

0.14 

1 29.911 32.268 30.369 27.926 29.627 29.041 31.857 34.639 32.317 26.127 27.517 25.846 

2 34.516 36.585 35.052 32.976 34.401 34.087 36.487 38.623 37.004 31.186 32.661 31.179 

3 45.898 47.472 47.686 44.989 45.977 47.252 48.087 48.967 49.817 43.034 44.770 44.579 

4 61.628 65.710 63.665 58.951 64.566 62.754 64.334 66.682 66.382 56.403 61.233 56.202 

5 64.199 68.494 65.869 61.816 64.816 65.142 66.912 71.812 68.569 59.277 64.075 58.930 

6 64.496 70.862 69.982 64.135 67.218 70.028 67.148 73.977 72.507 61.793 64.118 66.996 

0.17 

1 35.316 37.741 35.764 32.686 34.300 33.819 38.026 40.936 38.323 30.325 31.644 30.120 

2 41.253 43.336 41.826 39.279 40.563 40.467 44.105 46.048 44.482 36.848 38.419 36.994 

3 55.627 57.163 57.795 54.560 55.344 57.272 58.927 59.115 60.876 51.757 53.898 53.825 

4 73.769 79.971 75.986 70.149 76.015 74.391 77.640 81.214 79.443 66.657 71.569 66.706 

5 77.109 81.390 78.898 73.926 78.956 77.617 81.040 85.988 82.400 70.401 75.416 70.277 

6 78.801 84.469 85.552 78.522 79.526 85.785 82.932 88.769 89.382 75.018 78.100 80.551 

                 



 

19 

 

Table 8. The comparison of the first three frequencies for FG-CNTRC square plates with 0.17CV  = , CCCC boundary condition, ratio a/h = 20 

and centric cutout. 

a1/a (b1/b)  Type 

Mode 1 Mode 2 Mode 3 

Ritz-Chebyshev Present Ritz-Chebyshev Present Ritz-Chebyshev Present 

0.1 

UD 105.467 105.585 127.453 127.678 178.296 179.315 

FG-X 114.074 113.991 136.167 136.421 188.906 188.004 

FG-O 90.332 90.879 114.938 115.035 167.119 167.645 

FG-V 97.556 98.004 122.224 122.829 175.891 176.218 

0.3 

UD 120.444 120.865 126.966 126.526 169.807 170.115 

FG-X 130.605 130.211 136.397 136.713 181.185 181.924 

FG-O 102.708 102.908 112.474 112.809 150.962 151.437 

FG-V 111.198 111.434 120.288 120.944 160.606 159.992 

0.5 

UD 144.342 144.712 145.095 145.555 220.784 221.044 

FG-X 155.389 155.837 156.225 156.607 233.783 232.898 

FG-O 129.162 128.989 129.991 130.130 196.190 196.665 

FG-V 137.889 138.012 138.757 139.096 208.316 209.034 
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Table 9. The comparison of the first three frequencies for FG-CNTRC square plates with 0.17CV  = , SSSS boundary condition, ratio a/h = 20 

and centric cutout. 

a1/a (b1/b)  Type 

Mode 1 Mode 2 Mode 3 

Ritz-Chebyshev Present Ritz-Chebyshev Present Ritz-Chebyshev Present 

0.1 

UD 62.802 62.978 83.185 84.284 131.883 132.424 

FG-X 72.441 73.112 92.145 92.675 141.588 142.027 

FG-O 49.029 50.104 72.410 73.087 123.092 123.876 

FG-V 54.824 54.067 78.193 78.429 130.215 131.421 

0.3 

UD 52.823 52.333 78.351 78.878 111.674 112.013 

FG-X 60.572 61.745 87.199 87.645 119.193 120.469 

FG-O 41.986 42.412 67.447 68.198 100.770 101.048 

FG-V 46.742 47.527 73.082 73.917 107.283 107.954 

0.5 

UD 49.770 50.049 72.212 71.969 75.643 75.111 

FG-X 56.207 55.998 80.572 81.006 80.891 81.233 

FG-O 40.916 41.213 31.273 32.107 69.656 70.265 

FG-V 45.090 45.789 66.758 67.148 73.997 74.043 
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