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Summary  Lightweight structures, especially trusses, have attracted a tremendous attention due to 
their extensive applications in the construction of infrastructures. Optimizing the shape and cross-
sectional topology of truss members is essential since the truss systems are widely used in engineering 
routines. These systems form the framework of structures like bridges, steel halls for industry and 
trade, and towers. For the scope of this research, genetic algorithms (GAs) were used for weight 
optimization of truss structures. This paper aims to optimize truss structures for finding optimal cross-
sectional area. To optimize the cross-sectional area, all members were selected as design variables, 
with the structure’s weight being the objective function. The restrictions related to the change of the 
location of the nodes and the tension in the members were the looked-upon problems, the permissible 
values of which were determined under the circumstances of the problem. In addition, the resulting 
optimized model which masses for sizing, shape, and topology or their combinations, were compared. 
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Introduction 

The science of optimization is rapidly evolving along with other sciences. Researchers have 

considered the optimal design in many structural engineering issues. The idea of reducing 

the structure’s weight without adversely affecting its behavior has long been a concern of 

designers. This research aims to minimize the total mass of the structure while keeping it 

below the maximum allowed stress and displacement. First, the case studies were obtained 

from previous studies on truss optimization. Then, a comparison was made between the 

different results obtained. In general, the optimum design of a steel truss structure is an 

attempt to find the best steel profiles for its members that result in a minimum weight or cost 

of the design of the structure [1]. New optimization methods do not need to use linear, non-
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linear, and derivative programming methods and are based only on computational 

intelligence.  

A common problem in structural design is the weight minimization of structures 

subjected to stress and displacement constraints [3]. These methods use one or more initial 

designs resulting in the final designs and previously produced new optimal designs. This 

process is repeated several times to achieve the optimal solution. In this research, methods 

based on mathematical structural optimization algorithms were used to help in designing 

efficient structural methods for the optimal trusses design. To reach this aim, program was 

written in MATLAB. To verify the accuracy and efficiency of the program, two-dimensional 

trusses were optimized and compared with other sources. 

Optimization of truss structures is popular regarding the cross-sectional area of structural 

optimization, and over the last decades, various algorithms have been proposed for solving 

these problems. Some of the most popular methods are genetic algorithms (GAs), first 

introduced by Holland [4] and Goldberg [5]. A genetic algorithm is defined as a general tool 

for optimization in the field of discrete variables, such as structural problems [2]. Most of the 

metaheuristic algorithms are developed based on natural phenomena, including genetic 

algorithms (GA) [6], colliding bodies optimization (CBO) [7], and center of mass 

optimization (CMO) [8]. 

Objectives 

The objective of the present structural optimization is to minimize the total mass of the 

structure, while keeping the structure below the maximum allowable stress and displacement. 

This work aims to investigate and compare different results. A modern technique in structural 

optimization known as genetic algorithm (GA) was used in this research. The secondary aims 

of this research are: 

1. observing the structural behavior of truss structure from the cross-sectional area for 

different design loads, 

2. finding a combination variable that would minimize the structure weight by using 

optimization configurations since many researchers put considerable effort into 

solving this problem by investigating numerous optimization methods. 

 

Genetic algorithm 

The optimization method selected for this research is genetic algorithm (GA), a heuristic 

optimization method with operation based on imitating natural processes. This paper 

proposes a genetic algorithm to develop the structural configuration required for weight 

minimization of truss structures. An original optimization approach using a genetic algorithm 

was verified through comparison and used for all the optimization combinations in this 

research. The resulting optimized model which masses for sizing and shape or their 

combinations were compared. In this study, two basic steps were involved in generating a 

genetic algorithm relating to the mutation process for a smart genetic algorithm. Here, unlike 
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the conventional genetic algorithm where the mutation rate is constant in all generations, a 

variable mutation rate was used, the value of which is higher in the early generations and 

gradually decreases with the mutation rate. 

 

Design problem 

Many scientists have studied a 10-bar truss structure. In this example, the objective is to find 

the minimal weight of structure for design optimization of the 10-bar truss. The initial model 

bar and node design, as shown in Figure 1, has previously been analyzed by many 

researchers, such as Wu [9], Rajeev [10], Ringertz [11], and Li [12]. The trial-and-cut 

methods are usually performed for designing trusses and frames to determine factors such as 

allowable stress of structural members and deflection [13]. This study only compares a few 

previous studies. We only examine the weight optimization section of all the reviewed studies 

and compare their results with our findings. The results can be seen in Table 3. 

Problem formulation 

The design of truss structures typically consists of a two‐step linear and non-linear analyses. 

In optimization, the size of a truss structure, or truss cross-sectional area, are the design 

variables of the problem. The objective function of the problem is the weight of the truss 

structure. In discrete sizing optimization problems, the main task is selection. The optimal 

members’ section consists of a list of standard sections to minimize the structure’s weight, 

while meeting the design constraints.  

Figure 1 shows a typical plane-truss element in local and global coordinate systems. In 

the local numbering scheme, the two nodes of the element are numbered by 1 and 2. The 

local coordinate system consists of the 𝑥′-axis which runs along the element from node 1 

toward node 2. A prime ()′will denote all quantities in the local coordinate system. The global 

(𝑥, 𝑦)-coordinate system is fixed and does not depend on the element’s orientation. Note that 

𝑥, 𝑦, and 𝑧 form a right-handed coordinate system with the 𝑧-axis coming straight out of the 

paper. 
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In the global coordinate system, every node has two degrees of freedom (DoF). Here, a 

systematic numbering scheme is adopted: a node whose global node number is 𝑗 is associated 

with its DoF 2𝑗 − 1 and 2𝑗. Further, the global displacements are associated with node 𝑗 are 

𝑄2𝑗−1and 𝑄2𝑗 . 

Figure 1. Truss element in local and global coordinates. 

  

Figure 2. Truss element for calculation of direction cosines and length. 
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Let 𝑞1
′ and 𝑞2

′  be the displacements of nodes 1 and 2, respectively, in the local coordinate 

system. Thus, the element displacement vector in the local coordinate system is denoted by 

𝒒′ = [𝑞1
′ , 𝑞2

′ ]
𝑇

. (1) 

The element displacement vector in the global coordinate system is a (4 × 1) vector denoted 

by 

𝒒 = [𝑞1, 𝑞2, 𝑞3, 𝑞4]𝑇. (2) 

The relationship between 𝒒′ and 𝒒 is developed as follows: in Figure 1, we see that 𝑞1
′  equals 

to the sum of the projections of 𝑞1 and 𝑞2 onto the 𝑥 ′-axis. Thus 

𝑞1
′ = 𝑞1 𝑐𝑜𝑠 𝜃 + 𝑞2 𝑠𝑖𝑛 𝜃 ,    𝑞2

′ = 𝑞3 𝑐𝑜𝑠 𝜃 + 𝑞4 𝑠𝑖𝑛 𝜃. (3) 

At this stage, the direction cosines 𝑙 and 𝑚 are introduced as 𝑙 = 𝑐𝑜𝑠 𝜃 and 𝑚 = 𝑠𝑖𝑛 𝜃. These 

direction cosines are the cosines of the angles that the local 𝑥′-axis makes with the global 𝑥- 

and 𝑦-axes, respectively. Therefore, one can now write in matrix form 

𝒒′ = 𝑳𝒒 (4) 

where the transformation matrix 𝑳 is given by: 

𝑳 = [ 𝑙 𝑚 0 0
0 0 𝑙 𝑚

]. (5) 

Simple formulas are now given for calculating the direction cosines 𝑙 and 𝑚 from nodal 

coordinate data. Referring to Figure 2, let (𝑥1, 𝑦1) and (𝑥2, 𝑦2) be the coordinates of nodes 1 

and 2, respectively. We then have: 

 

𝑙 =
𝑥2−𝑥1

𝑙𝑒
, 𝑚 =

𝑦2−𝑦1

𝑙𝑒
, (6) 

where the length 𝑙𝑒 is obtained as 

𝑙𝑒 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2. (7) 

The element stiffness matrix for a truss element in the local coordinate system is given as 

𝒌′ =
𝐸𝑒𝐴𝑒

𝑙𝑒
[

1 −1
−1 1

], (8) 

where 𝐴𝑒 is the element cross-sectional area and 𝐸𝑒  is Young’s modulus. The problem at 

hand is to develop an expression for the element stiffness matrix in the global coordinate 

system. This can be obtained by considering the strain energy in the element. Specifically, 

the element strain energy in local coordinates is given by 

𝑈𝑒 =
1

2
𝒒′𝑇𝒌′𝒒′. (9) 

Substituting for 𝒒′ = 𝑳𝒒, we get 
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𝑈𝑒 =
1

2
𝒒𝑇[𝑳𝑇𝒌′𝑳]𝒒. (10) 

The strain energy in global coordinates can be written as 

𝑈𝑒 =
1

2
𝒒𝑇𝒌𝒒, (11) 

where 𝒌 is the element stiffness matrix in the global coordinates. From the previous equation, 

we obtain the element stiffness matrix in global coordinates as 

𝒌 = 𝑳𝑇𝒌′𝑳. (12) 

Substituting for 𝑳 and 𝒌′, we get 

𝒌 =
𝐸𝑒𝐴𝑒

𝑙𝑒
[

𝑙2 𝑚2 −𝑙2 −𝑚2

𝑙𝑚 𝑚2 −𝑙𝑚 −𝑚2

−𝑙2 −𝑙𝑚 𝑙2 𝑙𝑚
−𝑙𝑚 −𝑚2 𝑙𝑚 𝑚2

].  (13) 

The element stiffness matrices are assembled in the usual manner to obtain the structural 

stiffness matrix. Expressions for the element stresses can be obtained by noting that a truss 

element in local coordinates is a simple two-force member. Thus, stress 𝜎 in a truss element 

is given as 

𝜎 = 𝐸𝑒𝜀. (14) 

Since strain 𝜀 is the change in length per unit of original length, 

𝜎 = 𝐸𝑒
𝑞2
′ −𝑞1

′

𝑙𝑒
=

𝐸𝑒

𝑙𝑒
[−1 1] [

𝑞1
′

𝑞2
′
]. (15) 

This equation can be written in terms of the global displacements 𝒒 using the transformation 

 𝒒′ = 𝑳𝒒 as 

𝜎 =
𝐸𝑒

𝑙𝑒
[−1 1]𝑳𝒒. (16) 

Substituting for 𝑳 yields 

𝜎 =
𝐸𝑒

𝑙𝑒
[−𝑙 −𝑚 𝑙 𝑚]𝒒. (17) 

Once the displacements are determined by solving the finite element equations, the stresses 

can be recovered for each element. Note that a positive stress implies that the element is in 

tension and a negative stress means compression. 

Finally, in finite element analysis, we have the equation  

𝑲𝑸 = 𝑭, (18) 

where 𝑲 is the assemble of stiffness matrices in all elements, 𝑭 is the load vector, and 𝑸 is 

the unknown global displacements vector. 
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Figure 3. Configuration of truss structure problem. 

The nodal coordinate data of the present problem are given in Table 1: 

 
Table 1. Nodal coordinate. 

Node 𝑥 (m) 𝑦 (m) 

1 0 0 

2 9.144 0 
3      18.288 0 

4      18.288 9.144 

5 9.144 9.144 
6 0 9.144 

 

The element connectivity information is expressed in Table 2: 

 
Table 2. Element connectivity. 

Element 1 2 

1 1 2 
2 2 3 

3 3 4 

4 4 5 

5 5 6 
6 2 5 

7 1 5 

8 6 2 
9 2 4 

10 5 3 
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Moreover, using the nodal coordinate data and with element connectivity information, the 

direction cosines can be listed as in Table 3: 

 
Table 3. Direction cosines. 

Element 𝑙𝑒 𝑙 m 

1 9.144 1 0 

2 9.144 1 0 
3 9.144 0 1 

4 9.144 -1 0 

5 9.144 -1 0 
6 9.144 0 1 

7         12.931 0.707 0.707 

8         12.931 0.707       -0.707 
9         12.931 0.707 0.707 

10         12.931 0.707       -0.707 

In an optimization problem, achieving the design variables that obtain an objective function 

with the least value, while satisfying all design constraints, is possible. The objective function 

in this study includes the weight of the truss structure and it is defined as follows: 

𝑊 = ∑ 𝜌 ∙ 𝐿𝑗 ∙ 𝐴𝑗

𝐽

𝑗=1
, (19) 

where J is the number of truss members, ρ is the density of truss members, Lj is the length of 

the jth member of the truss, and Aj is the cross-sectional area of the jth member of the truss. 

Optimization model constraints and constraints related to axial stress of truss members 

The structure is a truss, so the only applied force in the structure is the axial force. As a result, 

the axial stress must be less than the allowable stress: 

σEd ≤ σRd ,  (20) 

where σEd is the existing stress (force on the cross-sectional area of the element) and σRd is 

the allowable axial stress. 

 

Constraints on the relocation of truss nodes 

In truss structures, the displacement of truss nodes is essential and should be limited. So, we 

have: 

𝑄𝑥,max  ≤  𝑄𝑥,limit  (21) 

𝑄𝑦,max  ≤  𝑄𝑦,limit  , (22) 

where 𝑄𝑥,max , 𝑄𝑦,max , 𝑄𝑥,limit and 𝑄𝑦,limit are the displacements of the existing node i in the 

X-direction and Y-direction, and permissible relocation of node i in the X-direction and Y-

direction. 
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Design examples 

Several examples of scientific papers were evaluated to examine the accuracy of the present 

results and to show the efficiency of the proposed algorithm. The genetic algorithm 

optimization code was written in the MATLAB-software [1]. Configurations of the truss and 

constraints were created and analyzed within MATLAB. All results were obtained from the 

MATLAB-software. In the following sections, several examples of related studies are 

evaluated to examine the accuracy of the results and to show the efficiency and effectiveness 

of the proposed algorithm. 

Six nodes and ten members 

In this example, a six-node truss is evaluated. Figure 3 shows the geometric characteristics 

of the loading and support conditions of this truss. The material of the truss elements is 

Aluminum 6063-T5 with a Young modulus of elasticity E = 68.95 GPa and density ρ = 

2767.99 kg/m3. 

The maximum allowable stress (σRd) equals to 172.40 MPa, the maximum allowable 

nodes displacement (Qmax) equals to 50.8 mm in both vertical and horizontal directions, and 

the load (P) equals to 444.82 kN. The truss is subjected to vertical loadings. The loads are 

considered at nodes 2 and 3. The cross-sectional areas A1. . . A10 are defined as the design 

variables with a minimum size limit of 1045.16 mm2 and a maximum size limit of 

21612.86 mm2. All cross-sectional areas are selected from Table 4 to design the truss 

structural members. 

 
Table 4. Cross-sectional areas. 

 
 

Tables 5 and 6 summarize the best designs presented so far, along with the results of the 

present study. Rajeev et al. [10], Coello et al. [1], and Camp et al. [17] used a conventional 

genetic algorithm, while Nanakorn et al. used an adaptive penalty function in a genetic 

algorithm [1]. 

 

1045.16 1696.77 2180.64 2503.22 3206.45 8709.66 12129.01

1161.30 1858.06 2238.71 2696.77 3303.22 8967.72 12838.68

1283.87 1890.32 2290.32 2722.58 3703.22 9161.27 14193.52

1374.19 1993.54 2341.93 2896.77 4658.06 9999.98 14774.16

1535.48 1993.54 2477.41 2961.28 5141.93 10322.56 17096.74

1690.32 2019.35 2496.77 3096.77 7419.34 10903.20 19354.80

21612.86

Cross-sectional areas [mm2]
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Table 5. Comparison of optimal cross-sectional area results of six-node truss structures. 

Design 
variables 

(mm2) 

Rajeev et al. Coello et al. Camp et al. Nanakorn et 
al. 

Present 
study 

A1    21612.86 19354.80 19354.80 21612.86 21612.86 

A2  1045.16 1045.16      1045.16      1045.16      1161.30 

A3    14193.52   14774.16    17096.74    14774.16    14193.52 

A4 9999.98     8709.66 8709.66      9999.98      9999.98 

A5 1045.16     1045.16 1045.16      1045.16      1045.16 

A6 1045.16     1045.16 1045.16      1045.16      1161.30 

A7     9161.27     8967.72     4658.06 4658.06 4658.06 

A8   12838.68   14193.52   14774.16   14774.16 14774.16 

A9   12838.68   14193.52   14193.52   14193.52    14193.52 

A10    1690.32     1045.16     1045.16     1045.16      1045.16 

 

In this research, the truss structure geometry was analyzed by using the genetic algorithm 

built in MATLAB, with the same conditions. The optimal results of the 10-bar truss structure 

are reported in Table 6. The values obtained are the best compromise solutions. The 

corresponding estimation function value, that is the minimized weight of truss structure, was 

𝑊(A1, A2, ..., A10) = 2486 kg.  As shown in Table 6, the value of weight obtained from the 

genetic algorithm is less than given by the algorithms used by Rajeev, Coello, and Nanakorn 

and inconsiderably greater than by Camp.  

 
Table 6. Comparison of optimal weight results of the six-nod truss structure. 

Design 

variables 

(mm2) 

Rajeev et al. Coello et al. Camp et al. Nanakorn et 

al. 

Present 

study 

A1 547.03 489.88 489.88 547.03 547.03 

A2        26.45        26.45        26.45        26.45        29.39 

A3      359.25 373.94      432.73 373.94 359.25 
A4      253.10 220.45      220.45 253.10 253.10 

A5        26.45        26.45        26.45 26.45        26.45 

A6 26.45  26.45 26.45 26.45        26.45 

A7     327.93      321.01 166.74     166.74      166.74 
A8     459.57      508.07 528.85     528.85 528.85 

A9     459.57      508.07 508.07     508.07 508.07 

A10       60.51        37.41        37.41       37.41        37.41 

Total weight 

(kg) 

2546 2538 2463 2495 2486 

 

The algorithm achieves a good solution after 200 iterations. In addition, the convergence of 

the genetic algorithm for the six-nodes truss is shown in Figure 4. In this figure, the process 

of reducing the structure’s weight with the number of simulations is observed. Therefore, 
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the displacement vector can be obtained as in Table 7. In addition, the stresses in elements 

are obtained as in Table 8. 

 

 
Figure 4. Convergence of the genetic algorithm for a six-node planar truss. 

 

Table 7. The result of deflection for each node. 

Degree of freedom Displacement 

(mm) 

𝑄1 0 

𝑄2 0 

𝑄3 -7.0316 

𝑄4         -34.2936 

𝑄5         -12.8574 

𝑄6         -50.6817 

𝑄7            6.7422 

𝑄8         -50.0506 

𝑄9            6.1112 

𝑄10         -20.1036 

𝑄11 0 

𝑄12 0 
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Table 8. The result of stress for each element. 

Element Stress (MPa) 

1 -53.0213 

2 -43.9295 

3            4.7584 
4     4.7584 

5    46.0811 

6  106.9989 

7   -52.7548 
8         102.7548 

9    -7.4772 

10   43.7704 

 

Conclusions 

Genetic algorithms are frequently applied in engineering design problems. In this paper, a 

genetic algorithm approach was used to simultaneously solve the optimization problem of 

sizing and topology optimization of truss structures. After comparing the 10-bar truss 

structure and our calculation results, the minimum weight of W(A1, A2, . . ., A10) = 2486 kg 

was acquired. Then, the weight of the 10-bar truss structure was improved, and the efficiency 

of the proposed method was confirmed. This is inferred since the improved GA is a global 

solution. 
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