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Some observations on the numerical solution of the
Ottosen�Stenström�Ristinmaa high-cycle fatigue model

Osmo Kaleva1 and Heikki Orelma

Summary Some years ago, Ottosen, Stenström and Ristinmaa introduced a high-cycle fatigue
model based on the continuum approach. The model is formulated as a fully implicit di�eren-
tial equation and an ordinary di�erential equation. The corresponding numerical solutions are
compared. We demonstrate pitfalls in the process so that appliers are able to avoid these prob-
lems. Especially, we show that the results depend on the initial value of the evolution equation.
We propose a method to choose such an initial value that the estimated Wöhler curve �ts the
measured data.
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Introduction

The continuum approach to high-cycle fatigue modeling was �rst introduced by Ottosen et
al. [9]. The idea was to de�ne a so-called endurance surface in stress space. The location
of the surface is governed by an evolution equation. The equation is a nonlinear, fully
implicit di�erential equation, which is a special case of di�erential-algebraic equations
(DAE). It follows that its numerical solution needs a dedicated methodology. Recently
Lindström et. al. [8] formulated the Ottosen�Stenström�Ristinmaa model, or the OSR
model for short, as an ordinary di�erential equation (ODE).

This paper is a part of our project concerning the OSR model. In [3], we studied the
estimation of the model parameters. In [4], we discussed the statistical properties of the
estimates obtained. Finally, in [5] we proposed a stochastic model for the stress process.

In this paper, we compare numerical solutions of the model formulated as a DAE and an
ODE. We bring forward salient points, such as e�ects of the initial values, which have to
be addressed, when solving the model.

1Corresponding author: osmo.kaleva@gmail.com
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Evolution equation based continuum model

In this section, we brie�y recall basic ideas of the evolution equation-based fatigue model
as given in [9]. The fundamental idea is to de�ne a so-called endurance surface β(σ,α) = 0
in stress space, such that the damage develops when the stress σ is outside of the surface.
As the authors did in [9], we use here a function of the form

β(σ,α) =
1

σ−1
(σ + AI1 − σ−1), (1)

where σ−1 and A are positive material parameters, I1 = tr(σ) is the �rst stress invariant
of σ, and

σ =
√

3
2

tr((s −α)2), (2)

where s = σ − 1
3

tr(σ)I and I stands for the identity matrix.

The variable α denotes the center of the endurance surface, and it is governed by the
evolution equation

α̇ =

{
C(s −α)β̇, when β, β̇ ≥ 0,

0, otherwise.
(3)

The fundamental postulate of the continuum model is that the damage increases only if
the stress state is outside the endurance surface and the endurance function β increases.
The damage development is modeled by the damage equation

Ḋ =

{
g(β,D)β̇, if β, β̇ ≥ 0,

0, otherwise,
(4)

where g is an increasing damage rule function. Usually D is normalized such that at the
beginning D(0) = 0 and the failure happens at the time tf when D(tf ) = 1. In this paper,
we choose the damage rule

g(β,D) =
K

(1−D)γ
eLβ.

This damage rule is called accumulated, since the damage history depends on the state
of the damage.

Remark 1. Recall that for symmetric matrices A,B tr(AB) de�nes an inner product.
The corresponding norm ||A||2F = tr(A2) is the Frobenius norm.

Denote r2 = 2
3
(σ−1 − A tr(σ))2. Then the equation of the endurance surface β(σ,α) = 0

may be written as ||s −α||2F = r2.

In the principal stress space, the equation tr(σ) = 0 de�nes a deviatoric plane with a

normal vector n =
[
1 1 1

]T
. Since s and α are deviatoric, they lie on the devi-

atoric plane and the endurance surface intersects the deviatoric plane along the circle
||s −α||2F = 2

3
(σ−1)

2. Figure 1 in [7] illustrates the situation.

Remark 2. Recall that the damage rule of the OSR model is g(β,D) = KeLβ. So the
right-hand side does not contain the damage variable D. Now, if the damage rule is
separable, i.e. g(β,D) = g−11 (D)g2(β), then a change of the damage variable yields the
OSR type damage rule, cf. [6, 7, 8].
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In fact, let G(D) be a primitive of g1(D), i.e. G′(D) = g1(D), and denote D1 = G(D).
Substituting these equations into the damage evolution equation (4) gives us the OSR type
damage evolution equation Ḋ1 = g2(β)β̇.

Note that in our case, the new damage variable D1 contains the parameter γ, which has
to be estimated alongside the other model parameters, cf. [3]. Finally D = G−1(D1).

Evolution equation formulated as DAE

For the moment, we suppose that the stress history σ(t) is known. First, we have to
estimate the parameters of the model as explained in [3, 9]. Then di�erentiating β, we
obtain

β̇ =
1

σ−1

(√
3
2

tr((s −α)(ṡ − α̇))√
tr((s −α)2)

+ A tr(σ̇)

)
. (5)

Let H denote the Heaviside function. Then we may write equation (3) as 0 = α̇−C(s −
α) β̇ H(β)H(β̇). Substituting equations (1) and (5) into the equation above, we obtain a
fully implicit di�erential equation

0 = F (t,α(t), α̇(t)), α(0) = α0, α̇(0) = α̇0. (6)

Hence we have to solve a system of di�erential equations{
α̇ = C(s −α) β̇ H(β)H(β̇), α(0) = α0, α̇(0) = α̇0,

Ḋ = K
(1−D)γ

eLβ β̇ H(β)H(β̇), D(0) = 0.
(7)

Proposition 3. If β(t,α(t)) ≥ 0 and β̇(t,α(t), α̇(t)) ≥ 0 on some interval I = [tk, tk+1],
then

−(1−D(tk+1))
γ+1 + (1−D(tk))

γ+1 = (γ+1)K
L

(exp(Lβ(tk+1))− (exp(Lβ(tk))) .

Proof. The result follows when we integrate the damage equation

(1−D)γḊ = KeLββ̇,

from tk to tk+1.

Now suppose we have uniaxial case with a periodic stress history. Then, after a transient
period, β(t) stabilizes to a periodic state, cf. [9]. If γ = 0, then the increase of D is
constant over the cycles. On one cycle we easily �nd intervals of increasing damage, i.e.
intervals [tp, tp+1], p = 1, 3, 5, · · · , on which β ≥ 0 and β̇ ≥ 0. Hence by Proposition 3,
we obtain ∆D during one cycle and consequently a lifetime Nf .

For the reader's convenience, we give a short description of a numerical method for solving
a fully implicit di�erential equation (6). For more details, see [10] and the references
therein. The most popular method is to use a backward di�erentiation formula of order
k, BDFk. We start with the backward Euler method, which is BDF1. Note that also
Holopainen et al. [2] used the backward Euler integration scheme with small time steps.

Now suppose we already have αn ≈ α(tn). We approximate

α̇(tn+1) ≈ 1
h
(αn+1 −αn),
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which yields an equation for the next approximation αn+1

0 = F (tn+1,αn+1,
1
h
(αn+1 −αn)).

This equation is solved by iteration. The iterate αm
n+1 is improved by

δ = αm+1
n+1 −αm

n+1.

The linear approximation of F gives the equation

0 = F (tn+1,α
m
n+1,

1
h
(αm

n+1 −αn)) +Mδ, (8)

where the iteration matrix

M = Fα(tn+1,α
m
n+1,

1
h
(αm

n+1 −αn)) +
1

h
Fα̇(tn+1,α

m
n+1,

1
h
(αm

n+1 −αn)).

Here Fα and Fα̇ denote the partial derivatives of F with respect to α and α̇. Solving
this linear system of equations gives δ and consequently αm+1

n+1 . Commonly used solvers
use di�erent details for solving equation (8).

Let β̇α and β̇α̇ denote the partial derivatives of β̇ with respect to α and α̇. Then, by
equation (3), we immediately obtain

Fα(t,α, α̇) =
(
CI β̇ − C(s −α) β̇α

)
H(β) H(β̇)

and
Fα̇(t,α, α̇) = I − C(s −α) β̇α̇ H(β) H(β̇).

What does a partial derivative with respect to a matrix mean? For example, take β̇α̇. We
propose to use the Gateaux derivative in the direction of the multiplicative unit element
I , i.e.

β̇α̇(t,α, α̇) = lim
u→0

β̇(t,α, α̇ + uI )− β̇(t,α, α̇)

u
.

With this choice we may apply formal di�erentiation rules for computing these partials.
Furthermore, in one-dimensional case β̇α̇(t,α, α̇) reduces to the ordinary partial deriva-
tive.

A straightforward computation shows that the de�nition and application of formal di�er-
entiation rules give

β̇α̇(t,α, α̇) = − 1

σ−1

√
3
2

tr(s −α)√
tr((s −α)2)

.

Similarly, a formal di�erentiation yields

β̇α(t,α, α̇) =
1

σ−1

√
3
2

tr(s −α) tr((s −α)(ṡ − α̇))− tr(ṡ − α̇) tr((s −α)2)

(tr((s −α)2))
3
2

.

A more sophisticated method is to apply the BDFk formula. Now suppose that tn+1−tn =
h for all n and let Q(t) be the polynomial, which interpolates αn+1−j, j = 0, · · · , k. We
demand that α̇n+1 = Q ′(tn+1). Using the Lagrange interpolation formula, Shampine [10]
shows that

α̇n+1 =
1

h

k∑
j=0

ajαn+1−j.
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Hence we have the iteration equation

0 = F
(
tn+1,αn+1,

1
h

∑k
j=0 ajαn+1−j

)
,

which is solved as above with the iteration matrix

M = Fα +
a0
h
Fα̇.

Some solvers also provide an option for computing consistent initial values, which in
general is a di�cult task.

Evolution equation formulated as ODE

Lindström et al. [8] recently introduced an auxiliary function

ν(σ, σ̇,α) =
1

σ−1 + C
√

3
2

tr((s −α)2)

(√
3
2

tr((s −α)ṡ)

tr((s −α)2)
+ A tr(σ̇)

)
. (9)

They showed that H(β)H(β̇)β̇ = H(β)H(ν)ν. and consequently that the OSR model
(7) reduces to {

α̇ = C(s −α) H(β)H(ν)ν, α(0) = α0,

Ḋ = K
(1−D)γ

eLβ H(β)H(ν)ν, D(0) = 0,
(10)

which is an ordinary di�erential equation. It follows that in the study of theoretical
properties of the solution the well-developed theory of ordinary di�erential equations may
be used. Furthermore for the numerical solution there are plenty of programs available in
the public domain.

One-dimensional case

Now let σ be a uniaxial stress history and γ = 0, that is σ = diag(σ, 0, 0) with devia-
toric matrices s = diag(2

3
σ,−1

3
σ,−1

3
σ) and α = diag(α,−1

2
α,−1

2
α). A straightforward

computation gives β = 1
σ−1

(|σ − 3
2
α|+ Aσ − σ−1) and hence

β̇ =
1

σ−1
(sgn(σ − 3

2
α)(σ̇ − 3

2
α̇) + Aσ̇).

Here sgn denotes the signum function and diag(a, b, c) a diagonal matrix with diagonal
elements as arguments. Similarly we get

ν =

(
sgn(σ − 3

2
α) + A

)
σ̇

σ−1 + C|σ − 3
2
α|

.

Experimental datasets

We will demonstrate the behavior of the model with three di�erent datasets. Measure-
ments of alloy steel SAE 4340 were adopted from [9]. Experimental values of lifetimes
of S45C carbon steel were given in [11]. Lindström et al. [8] provided model parameter
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estimates for 7050-T7451 aluminum alloy. In Table 1, we give model parameter estimates
for all these datasets.

Material A σ−1 C K L

NiCrMo alloy steel
SAE 4340

0.2250 490 0.8083 6.9668e-06 18.4562

Aluminum alloy
7050-T7451

0.2611 113.3 0.5039 5.111e-06 2.556

Carbon steel
S45C

0.2559 220 0.5000 10.511e-06 0.1000

Table 1. Parameters of the OSR model for some materials

Computational details and results

In this section, we compare the DAE and ODE solutions of the model with the datasets
given above, and we especially demonstrate the dependence of the solution on the initial
value α0.

In the examples, we apply a stress history σ(t) = σm + σa sin(t). Since it has a period of
2π, we integrate over intervals [2kπ, 2(k + 1)π], k = 0, 1, · · · , with time step ∆t = 0.001.
During the process we check the convergence of β. The convergence criterion is the
maximum di�erence of β in two consecutive intervals. The convergence tolerance depends
on the problem as well as on the solution method. We found out that generally with DAE-
solver it was possible to use more strict tolerances. The lifetime for each initial value is
obtained as described above. We report only the maximum lifetime.

In the numerical computations, we use di�erential equation solvers ode15i and ode45
as implemented in Matlab. Ode15i solves fully implicit di�erential equations. It is a
variable-step, variable-order solver based on the BDFk of orders k = 1, · · · , 5. Note, that
for ode15i we also need an initial value α̇0. The initial values must be consistent, meaning
that F (0,α0, α̇0) = 0. The Matlab function decic computes consistent initial values. For
more information, see [10]. Ode45 solves nonsti� di�erential equations. It is based on an
explicit Runge�Kutta (4,5) formula as given in [1].

First we analyze dataset S45C. The results are given in Figures 1�4.

Figure 1. Endurance function, DAE solution,

dataset S45C

Figure 2. Back-stress α; maximum lifetimeNf =
163462 with α0 = 40 MPa
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Figure 3. Endurance function, ODE solution,

dataset S45C

Figure 4. Back-stress α; maximum lifetimeNf =
162662 with α0 = 40 MPa

We see that both solutions behave as expected. After a transient, the back-stress and
the evolution function stabilize into a cyclic steady-state, which is the same for all initial
values. It follows that also lifetimes are equal for all initial values. Furthermore, the
lifetimes given by the DAE and ODE solutions are approximately the same.

Next we take dataset SAE 4340. Now the DAE solution behaves oddly. Back-stresses
stabilize to di�erent constant values and the steady-state of β depends on the initial value.
In the ODE solution, there seems to be no cyclic steady-state for back-stress. However
the steady-state of β is essentially the same for all initial values. The lifetimes of these
solutions are incompatible. Figures 5�8 present the results.

Figure 5. Endurance function, DAE solution,

dataset SAE 4340

Figure 6. Back-stress α; maximum lifetimeNf =
2567297 with α0 = 80 MPa
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Figure 7. Endurance function, ODE solution,

dataset SAE 4340

Figure 8. Back-stress α; maximum lifetimeNf =
6170373 with α0 = 40 MPa

Now, instead of σm = 0, we apply a positive mean stress. With a stress function σ(t) =
0.8σ−1 + σ−1 sin(t), both solutions behave similarly according to the theory, and the
lifetimes are of the same magnitude. This is seen in Figures 9�12.

Figure 9. Endurance function, DAE solution,

dataset SAE 4340

Figure 10. Back-stress α; maximum lifetime

Nf = 105309 with α0 = 200 MPa

Figure 11. Endurance function, ODE solution,

dataset SAE 4340

Figure 12. Back-stress α; maximum lifetime

Nf = 97850 with α0 = 500 MPa

Finally, in Figures 13�16 we see that in dataset 7050-T7451, both solutions give similar
results, which are consistent with theoretical expectations.
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Figure 13. Endurance function, DAE solution,

dataset 7040-T7451

Figure 14. Back-stress α; maximum lifetime

Nf = 260777 with α0 = 150 MPa

Figure 15. Endurance function, ODE solution,

dataset 7040-T7451

Figure 16. Back-stress α; maximum lifetime

Nf = 272618 with α0 = 0 MPa

Wöhler curve estimation

As we have seen, the estimated lifetime for a material depends on the solution method
and initial values. For the DAE solution, this is demonstrated in Figures 17 and 18.

Figure 17. Lifetime dependence on initial value,

dataset S45C

Figure 18. Lifetime dependence on initial value,

dataset SAE 4340
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Remark 4. If the di�erential system is well-behaved, then in Figures 17 and 18 the
lifetimes should be constant, at least locally. On the other hand, if the system is chaotic,
then the lifetimes probably vary randomly. However, we see that the dependence of the
lifetime on the initial value is a smooth curve.

One reason may be the discontinuous Heaviside function in the model.

So, how should we select an appropriate initial value for the back-stress? We choose
the initial value, which gives the maximal lifetime. With this choice the model produces
lifetimes compatible with experimental data.

In the Wöhler curve computations, we applied a grid of initial values, and the greatest
of lifetimes obtained was accepted. We observed that sometimes a di�erential equation
solver fails to integrate over an interval. It follows that we have to tinker with the input
parameters of the programs even to get a result.

Figure 19 illustrates the Wöhler curve estimate for SAE 4340. The curves are identical
at small amplitudes. However, the ODE solution behaves strangely at high amplitudes.
We ran the models until both solutions reached a stable state for all amplitudes and
initial values. For this we had to apply a loose convergence tolerance tol = 5 · 10−1. The
computation with the exhaustive search of initial values took 63 seconds with DAE and
106 seconds with ODE.

Next we ran the models with an optimal initial value as given by the equation (11). We
hoped that we could tighten the convergence criteria. This was not the case and we
applied tolerance tol = 5 · 10−1. The computation took only 4 seconds with DAE and 6
seconds with ODE. Again the ODE solution behaves strangely as seen in Figure 20. Now
the curve was even worse than in Figure 19.

Figure 19. Estimated Wöhler curve with ex-

haustive search

Figure 20. Estimated Wöhler curve with optimal

initial value

We observed that generally the DAE solution stabilized more rapidly than the ODE
solution. Also with DAE it was possible to use tighter tolerances. However, we have no
explanation for the strange behavior of the ODE solution.

The DAE model �ts well to four data points. Instead one data point falls away from the
model. We estimated the model parameters using all 20 data points given in [9]. Only
5 of them, which appear in Figures 19 and 20, were measured with mean stress σm = 0.
This may explain the discrepancy.
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Obtaining a good initial value

We have seen that di�erent initial values give distinct lifetimes. Furthermore, the exhaus-
tive search for a good initial value was time consuming. In this section, we address the
question, whether it is possible to choose a good initial value beforehand.

For the DAE model, we selected a representative set of amplitudes and computed initial
values αopt, which gave the maximum lifetime. We found out that αopt depends linearly
on the amplitude σa. Next, we �tted a straight line to the computed data. Hence the
optimal initial value curve is

αopt = c1σa + c2, (11)

where c1 and c2 are material parameters.

The situation is illustrated in Figures 21 and 22.

Figure 21. The optimal initial value curve,

dataset S45C

Figure 22. The optimal initial value curve,

dataset SAE 4340

In Table 2, we give the parameters of the optimal initial value curve for the three material
discussed in this paper.

Material c1 c2 (MPa)

NiCrMo alloy steel SAE 4340 0.1510 -0.7308

Aluminum alloy 7050-T7451 0.1667 1.1667

Carbon steel S45C 0.1642 1.4804

Table 2. Parameters of the initial value curve for some materials

Remark 5. In [7], Lindström characterized the back-stress as follows: We can understand
the presence of a back-stress as inelastic deformation associated with microdamage in
individual grains or grain boundary segments.

With the optimal choice of the initial value we try to put α0 directly into the interval,
where back-stress varies after the transient phase.
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Conclusions

We have experimentally compared the DAE and ODE solutions for the OSR model with
uniaxial examples. The dependence on initial values were discussed. For the Wöhler curve
estimation, we suggest the following procedure: use the DAE formulation and compute
an initial value by Equation (11), if available. Otherwise, apply a grid of initial values
and accept the greatest of lifetimes obtained.
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