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Parabolic tendons in prestressed concrete – how accurate 

are equivalent loads? 
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Summary  The mechanical effects of a parabolic tendon can be modeled by replacing the tendon by external 

loads applied to the concrete. The intensity of these loads depends on the prestressing force P and curvature of 

the tendons. These two factors are also interrelated because the losses of prestress vary with the curvature. The 

structural analysis can be simplified by approximating that, between the anchors, the line load generated by 

the tendon against the concrete is constant, perpendicular to the centroidal axis of the beam and equal to P/R 

where R is the radius of curvature of the parabola at its vertex. This approximation is one of the key issues in 

the textbooks but normally not properly justified. In this paper, the mathematical background for the 

approximation is formulated. Some typical tendon layouts are analyzed to evaluate the approximation error. 

The error proved to be insignificant for simple beams. For cantilever and continuous beams more accurate 

methods in the final design are recommended. 
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Introduction 

Parabolic prestressing tendons embedded in concrete members are mainly used to resist uniformly or 

almost uniformly distributed loads. The mechanical behaviour of such tendons can be easily 

illustrated by the concept of equivalent loads. The concrete component is regarded as a free body, 

and the effects of each tendon are replaced by equivalent loads, i.e. by external loads applied to the 

concrete: point loads at the anchors and a line load between them. The textbooks, e.g., Gilbert & 

Mickleborough [1], p. 9, and Lin & Burns [2], p. 21, generally state that this line load is equivalent 

to a constant, external line load perpendicular to the centroidal axis of the beam and equal to q = 2Pa 

where P is the tendon force and a denotes the coefficient of the second-degree term of the parabola. 

In the rest of this paper, the counterforce of q exerted on the concrete is called approximate or 

traditional equivalent load or simply equivalent load. Even though it is not explicitly stated, the 

textbooks give an impression that if a concrete beam is shallow enough to justify the use of elementary 

beam theory, the traditional equivalent load is a safe approximation despite the fact that, due to the 

losses of prestress, P varies along the length of the tendon. The proper value of P to be used for in 

the equivalent load is subject for engineering judgement. Since the key point of the present study is 

to illustrate the error when the varying curvature of a parabolic tendon is modeled by its maximum 

value, and idealized tendon with constant P is used in the considerations.  

http://rakenteidenmekaniikka.journal.fi/
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A great number of peer reviewed articles about formulation and application of loads equivalent to 

the parabolic and other loads have been published. It is generally assumed that the eccentricity of the 

tendon is much smaller than the span length(s) of the beam. In some cases, the consequences of this 

and other simplifying assumptions on the mechanical equilibrium have qualitatively been mentioned, 

but to the author’s knowledge, no quantitative comparison about the accuracy of the equivalent load 

approach has been published.  

Actions due to curved tendon 

Actions exerted to the concrete by a curved tendon are equal but opposite to the actions which the 

concrete exerts to the tendon. The latter actions are considered in this section.  

Assume that u = u(x) gives the vertical position of an in-plane tendon subjected to an axial force 

P at the ends. s denotes the coordinate measured along the tendon. In the absence of bond and friction, 

there are no tangential external forces affecting the tendon between the anchors. Let q = q(s) be the 

perpendicular force per unit length of the tendon and  = (x) the angle between the horizontal axis 

and the tendon, see Figure 1. In Figure 2, the free body diagram for a short cut of the tendon with 

length s is shown. 

 

 
 

Figure 1. Forces affecting the idealized tendon. 

 

    
a)               (b) 

Figure 2. a) Notation. b) Forces on a short cut of tendon. 

 

For a small increment s, we obtain 

 

                          Δ𝑠 ≈
∆𝑥

𝑐𝑜𝑠𝛼
    (1) 

                         
 𝑑𝑢

𝑑𝑥
= 𝑡𝑎𝑛𝛼    (2) 

             
𝑑2𝑢

𝑑𝑥2 =
 𝑑(𝑡𝑎𝑛𝛼)

𝑑𝛼

𝑑𝛼

𝑑𝑥
=

1

𝑐𝑜𝑠2𝛼

𝑑𝛼

𝑑𝑥
   (3) 

             ∆𝛼 ≈
𝑑𝛼

𝑑𝑥
∆𝑥 =

𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠3𝛼∆𝑠   (4) 

The resultant of the horizontal component of q(s) in Figure 2 equals to 

 

                  𝑄ℎ𝑜𝑟 ≈ 𝑞(𝑠)𝑠𝑖𝑛(𝛼)∆𝑠   (5) 

The equilibrium of horizontal forces gives  

Jänteen päihin vaikuttaa jänteen suun-
tainen voima P (ankkurit). Päiden välillä 
on (ei kitkaa) vain jänteeseen nähden 
kohtisuoria, poikittaisia voimia q(x) eli 
ohjausvoimia. 
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                            𝑃𝑐𝑜𝑠𝛼 ≈ 𝑞(𝑠)𝑠𝑖𝑛(𝛼)∆𝑠 + 𝑃𝑐𝑜𝑠(𝛼 + ∆𝛼)  (6) 

                          𝑞(𝑠)𝑠𝑖𝑛(𝛼)∆𝑠 ≈ −𝑃[𝑐𝑜𝑠(𝛼 + ∆𝛼) − 𝑐𝑜𝑠𝛼]  (7) 

Dividing and multiplying the right-hand side by  and using Equation 4 we obtain 

 

                      𝑞(𝑠)𝑠𝑖𝑛(𝛼)∆𝑠 ≈ −𝑃
[𝑐𝑜𝑠(𝛼+∆𝛼)−𝑐𝑜𝑠𝛼]

∆𝛼

𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠3𝛼∆𝑠  (8) 

Divide both sides by s and let  → 0. It follows that  

 

                                𝑞(𝑠)𝑠𝑖𝑛(𝛼) = −𝑃(−𝑠𝑖𝑛𝛼)
𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠3𝛼                              (9) 

or, in case 𝑠𝑖𝑛(𝛼) ≠ 0 

                     𝑞(𝑠) = 𝑃
𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠3𝛼    (10) 

When 𝑠𝑖𝑛(𝛼) = 0, the same result is obtained by considering the equilibrium of vertical forces. 

The vertical and horizontal components of q are 

 

          𝑞𝑣(𝑠) = 𝑞(𝑠)𝑐𝑜𝑠 = 𝑃
𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠4                         (11) 

                                𝑞ℎ(𝑠) = 𝑞(𝑠)𝑠𝑖𝑛 = 𝑃
𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠3 𝑠𝑖𝑛  (12) 

In numeric calculations it is more convenient to use the vertical and horizontal forces per unit 

length in the x-direction: 

 

                                                𝑞𝑣,𝑥 = 𝑃
𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠4
Δs

Δ𝑥
= 𝑃

𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠3                        (13) 

                          𝑞ℎ,𝑥 = 𝑃
𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠3 𝑠𝑖𝑛
Δs

Δx
= 𝑃

𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠2 𝑠𝑖𝑛  (14) 

Applications 

Circular Tendon  

To check the theory in the simplest possible case, it is first applied to a circular arch for which the 

exact solution is well-known.  

 

 
 

Figure 3. Notation. 
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For a circular arch, see Figure 3 for the symbols, the well-known exact solution q = P/R is also 

obtained from Equation 15: 

 

                                  𝑞(𝑠) = 𝑃
𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠3 = 𝑃 (
1

√𝑅2−𝑥2
+

𝑥2

(√𝑅2−𝑥2)
3) (

(√𝑅2−𝑥2)
3

𝑅3 ) =
𝑃

𝑅
 (15) 

Parabolic Tendon 

For a parabola u=ax2+bx+c, 

 

            𝑞(𝑠) = 𝑃
𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠3 = 2𝑃𝑎𝑐𝑜𝑠3  (16) 

The vertical and horizontal forces per unit length in the x-direction are 

 

                       𝑞𝑣,𝑥 = 2𝑃𝑎𝑐𝑜𝑠3   (17) 

                  𝑞ℎ,𝑥 = 2𝑃𝑎𝑐𝑜𝑠2 𝑠𝑖𝑛   (18) 

When  ≈ 0, cos  ≈ 1 and sin  ≈ 0. It follows that  tan = u’ ≈ 0. In such a case 

 

                         𝑞𝑣,𝑥 ≈ 2𝑃𝑎    (19) 

                         𝑞ℎ,𝑥 ≈ 0    (20) 

Figure 4 illustrates the parameters of parabola 

 

                    𝑢(𝑥) =
4ℎ

𝐿2 (𝑥 −
𝐿

2
)

2

   (21) 

 

Figure 4. Notation for a parabolic tendon. 

For this parabola 

 

  𝑞𝑣,𝑥 = 𝑃
𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠3 =
8𝑃ℎ

𝐿2 𝑐𝑜𝑠3 ≈
8𝑃ℎ

𝐿2    (22) 

                    𝑞ℎ,𝑥 = 𝑃
𝑑2𝑢

𝑑𝑥2 𝑐𝑜𝑠2𝑠𝑖𝑛𝛼 =
8𝑃ℎ

𝐿2 𝑐𝑜𝑠2 𝑠𝑖𝑛𝛼 ≈ 0  (23) 

In the outermost spans of a continuous beam, it is advantageous to use tendon profiles which are 

not symmetric with respect to the midpoint of span. This can be done, e.g., by adding a linear term  

kx + b to the expression of u(x) which then becomes 

 

          𝑢(𝑥) =
4ℎ

𝐿2 (𝑥 −
𝐿

2
)

2

+ 𝑘𝑥 + 𝑏   (24) 
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In daily practice it is assumed that q for tendon profiles defined by Equations 21 and 24 is the 

same. This is justified e.g. in the classical textbook of Lin & Burns [2], p. 372, by stating that “…by 

linear transformation, the shape of the line within each span remains unchanged…”. Strictly speaking, 

the radius of curvature for u = u(x) is expressed as  

 

                        𝑅 = |
(1+𝑢′2)

3
2

𝑢"
|   (25) 

A linear change kx + b with k ≠ 0 also changes u’, and the curvature of the tendon. However, when 

u’2 is much smaller than 1 it is justified to write  

 

                        𝑅 ≈ |
1

𝑢"
| =

1

|2𝑎|
    (26) 

Figure 5 illustrates qv,x and qh,x for the parabolic tendon profile shown in Figure 4. In mid-span, 

the approximate value 2Pa equals the correct value of the vertical component qv,x  but next to the 

support the difference is more than 10%. However, a direct comparison of qv,x with 2Pa is not relevant 

because qh,x also affects the bending moment and because the bending moment is not sensitive to 

transverse loads close to the supports, see Figure 5. The validity of the approximation must be studied 

by evaluating the bending moment itself, not qv,x alone. 

 

 

Figure 5. Horizontal (qh,x) and vertical (qv,x) component of q. L = 40 m and h = 3 m. 

Numerical comparison of exact and approximate equivalent loads 

Principles of Exact Solution 

Consider first a statically determinate beam shown in Figure 6 in which c.g.c. refers to the centroidal 

axis of the concrete section. 

 

 

Figure 6. Forces due to P acting on a tendon at an arbitrary section. 
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From equilibrium of forces at an arbitrary section, the following action effects on the concrete 

section are obtained from the free body diagram: 

 

                    𝑁(𝑥) = −𝑃𝑐𝑜𝑠𝛼(𝑥)   (27) 

                    𝑉(𝑥) = −𝑃𝑠𝑖𝑛𝛼(𝑥)   (28) 

                   𝑀(𝑥) = 𝑢(𝑥)𝑃𝑐𝑜𝑠𝛼(𝑥)   (29) 

A continuous beam is solved by first removing n–2 restrictions where n is the number of supports, 

then calculating the deflections using Equation (29) for the moment, adding vertical loads which 

make the total deflections at the removed restrictions equal to zero, and finally superimposing the 

bending moment due to these vertical loads to the bending moment obtained from Equation (29). 

In the following a few beams are compared. Their tendon profiles are smooth, i.e., u(x) is 

continuously differentiable. For each beam, several eccentricities h of each tendon profile u are 

considered in such a way that u(x,h) = hu0(x) where h is the depth of the profile. The bending moment 

M due to the prestressing force P is independent of the concrete cross section and directly proportional 

to P. This implies that the relative error, i.e., the error due to the approximation divided by the 

reference bending moment Mref is also independent of P. Here Mref is the maximum absolute value of 

the exact bending moment Mex in the zone considered or 

 

                  𝑀𝑟𝑒𝑓 = 𝑚𝑎𝑥{|𝑀𝑒𝑥(𝑥)|}   (30) 

For a simple beam Mref is obtained at mid-span, for a cantilever beam at the clamped end. In a 

continuous beam each positive and negative moment zone corresponds to a different Mref. Since P 

and the beam cross section do not contribute to the relative error, they are not explicitly given in the 

following. 

 

Simple Beam 

Consider the hypothetical beam shown in Figure 7. The tendon geometry is given by 

 

                  𝑢(𝑥) =
4ℎ

𝐿2 (𝑥 −
𝐿

2
)

2

− ℎ   (31) 

 

Figure 7. Simple beam with parabolic tendon. 

The exact bending moment affecting the concrete at supports and at midspan equals 0 and –Ph, 

respectively. Assuming that the vertical uniformly distributed load q = –2Pa we obtain M(0) = M(L) 

= 0 and 

             𝑀(𝐿/2) = −2𝑃
4ℎ

𝐿2

𝐿2

8
= −𝑃ℎ   (32) 

In other words, the approximation gives the exact bending moment both at supports and at mid-

span. The approximation overestimates the effect of the vertical component of q but ignores the 
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horizontal component. This explains why the bending moment at mid-span can be correctly 

approximated. 

In Figure 8, the exact bending moment calculated by using Equations (27 – 29) is compared with 

that due to traditional equivalent load, i.e., transverse constant uniformly distributed load q = –2Pa =  

–8h/L2. In Figure 8, the error in approximation divided by reference value Mref = Ph is shown for 

three profile eccentricities h.  

 

 

Figure 8. Comparison of approximated and exact bending moment. 

 

Figure 9. Relative error in approximated bending moment. 

The approximation slightly overestimates the effect of prestressing outside the critical zone which 

is in the mid-zone. This is unimportant as regards the stress analysis. The mid-point camber is also 

overestimated but only by less than 1 %. 

The maximum relative error increases with h. It occurs close to the supports where the risk of 

bending failure and cracking in ordinary beam structures is seldom critical. h greater than 6 m means 

that application of the elementary beam theory is no more accurate. To conclude, when the beam is 

shallow enough to enable the use of the elementary beam theory, it is safe to check the bending effects 

of a parabolic tendon in a simply supported beam using the traditional equivalent loads provided that 

the losses of prestress are taken into account by a proper manner.   

 

Cantilever Beam 

The beam shown in Figure 10 is prestressed with a tendon for which 

                          𝑢(𝑥) =
ℎ

𝐿2 𝑥2   (33) 

The error in the approximated bending moment, see Figs 10 and 11, is more pronounced than in 

the simply supported beam. This is attributable to the fact that the approximation overestimates the 

vertical component of q and this effect is not balanced by the asymmetric horizontal forces. Moreover, 
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the maximum error not only overestimates the effect of the prestress but also occurs at the critical 

section.  

 

 

Figure 10. Cantilever beam. 

 

Figure 11. Comparison of exact and approximate bending moment. 

 

Figure 12. Relative error in cantilever beam. 

The camber of the free end of the beam is overestimated by 1.3% and 5.1% for h = 1.0 m and 2.0 

m, respectively, when calculated using the elementary beam theory. This is not a very accurate 

approach for the case h = 2.0 m but suggests that the relative error in the deflection is smaller than 

that in the bending moment. 

 

Continuous Beam 

A continuous beam with three spans is shown in Figure 13. 

 

 
a) 
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b) 

Figure 13. a) Continuous beam. b) Tendon profile. 

 

Using the symbols of Figure 13, the tendon geometry is defined by 

 

   𝑢(𝑥) = 𝑎1𝑥2 + 𝑏1𝑥                       when    𝑥 ≤ 𝐿1 − 𝑟  (34)  

           𝑢(𝑥) = 𝑎3(𝑥 − 𝐿1)2 + 𝑏3(𝑥 − 𝐿1) + 𝑐3             𝐿1 − 𝑟 < x ≤ 𝐿1 + 𝑡  (35) 

                𝑢(𝑥)  = 𝑎2 (𝑥 − 𝐿1 −
𝐿2

2
)

2

+ 𝑐2                      𝐿1 + 𝑡 < 𝑥 ≤  𝐿1 +
𝐿2

2
 (36) 

r + t is the length of the concave parabola zone. Cases with t = 4.0 m and t = 6.5 m are first 

considered. Parameters ai, bi, ci and r are chosen in such a way that u is continuously differentiable 

at x = L1 – r and L1 + t, see Appendix A for the numerical values. The traditional equivalent loads 

on the concrete, see Figure 14, are  

 

                          𝑞1  = 2𝑃𝑎1, 𝑞2  = 2𝑃𝑎2, 𝑞3 = 2𝑃𝑎3   (37) 

 

Figure 14. Uniformly distributed equivalent loads. 

 

Figures 15 and 16 compare the bending moments calculated for two lengths of concave tendon 

profiles keeping the eccentricity of the tendon constant.   

  

 
a) 

 
b) 

Figure 15. h = 2.0 m. Comparison of exact and approximate bending moment for two lengths of concave 

tendon zone.  
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The moment diagram appears to be sensitive to the length of the concave tendon zone: the 

approximate moment diagrams for the shorter length (r + t =3.93 + 4.0 = 7.93 m ) and longer length 

(6.39 + 6.5 = 12.39 m) are on the opposite sides of the exact moment diagram. This suggests that 

there might be an intermediate length which minimizes the error. Indeed, when r = 4.91 m and  t = 

5.0 m, the approximate and exact moment diagrams coincide so accurately, that the difference is too 

small for graphical illustration. The relative error for h = 2.0 m is illustrated in Figure 16 for t = 4.0 

m and 5.0 m.  

 

Figure 16. h = 2 m. Relative error in approximated bending moment for two t-values. 

 

When a uniformly distributed load is applied to a continuous beam, the negative bending moment at 

the intermediate supports and the maximum positive bending moment in the span determine the 

critical zones in the service design. A moderate error in bending moment estimation outside these 

zones does not have severe consequences. In Figure 16, the location of maxima and minima of the 

bending moment due to the prestress are indicated by black dots. The critical regions in serviceability 

design are not far from these dots. With this in mind, the significant approximation error for t = 4.0 

m is of the order of 4% and 6% at the intermediate support and in the middle of the beam, respectively. 

For t = 6.5 m, see Figure 17, the elative error is less pronounced, and for t = 5.0 m it is meaningless. 

As illustrated in Figure 17, the significant approximation error for the maximum and minimum 

bending moment is virtually independent of the eccentricity h.  

 

          
a) 

   
  b) 

Figure 17. Relative error in approximated bending moment. a) t = 4.0 m. b) t = 6.5 m. 

Conclusions 

The curvature of parabola u(x) = ax2+bx+c varies with x and has its maximum at the vertex of the 

parabola. The traditional concept of equivalent load assumes that between the anchors, the effects of 

a parabolic tendon on the concrete are equivalent to a constant line load q = –2Pa where q is 

considered perpendicular to the axis of the beam and P is the prestressing force in the tendon.  Since 

P also varies with x due to the losses of prestress, some properly chosen value of P has to be used to 

make q constant.   
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To evaluate the error in the bending moment due to this approximation, numerical examples have 

been analyzed assuming idealized tendons with constant axial force along the tendon. Three cases are 

considered: a simply supported, a cantilever and a continuous beam.  

The maximum error in cantilever beams occurs at the fixed end which is the critical cross section 

in the design. The relative error is proportional to the depth of the tendon profile.  

The relative error in simply supported beams is also proportional to the tendon depth, but it 

vanishes at mid-span and at supports. The maximum deviation from the exact value occurs close to 

the supports where it is unimportant. 

The behaviour of continuous beams with parabolic tendons is more complex than that of a simply 

supported or cantilever beam. The critical regions in the design are located at intermediate supports 

and in the span between the supports, but the extreme values of the relative error occur elsewhere. 

The relative error at the critical sections seems to be almost insensitive to the eccentricity of the 

tendon profile, but it is sensitive to the length of the concave parabola zone over the intermediate 

supports. 

When elementary beam theory is applied, the depth to span–ratio of the member cannot be too 

high. Very small radii of curvature are not possible for technical reasons.  Due to these two factors, 

the resulting errors in the analysis based on traditional equivalent loads remain small enough to justify 

such an approximation in the preliminary design. This may not be the case in the final design of 

cantilever and continuous beams as shown by a few examples. In any case, more research is needed 

to find out a reliable answer to the question: When is it safe to apply the traditional concept of 

equivalent loads to parabolic tendons?  

The concept of equivalent loads provide the designers with a useful tool for preliminary design of 

continuous beams and with an excellent illustration for the actions due to parabolic tendons. 

Unfortunately, numerous textbooks written so far include no proper justification for the traditional 

equivalent loads in case of parabolic tendons. The presented “exact” equivalent load distribution is 

proposed for education to show under which conditions the traditional equivalent loads work 

properly. It also explains, why a linear change in the tendon geometry of a continuous beam does not 

change the equivalent loads: the curvature approximated by the second derivative is not affected by 

the second derivative of the linear change.  
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Appendix A 

Parameters of tendon geometry in continuous beams 

The parameters of the parabolas determining the tendon profile in Figure A1 are solved by setting 

u(x) and u’(x) continuous at x = L1 – r and x = L1 + t.  

 

 

Figure A1. Continuous beam. 

 

𝑢(𝑥) = 𝑎1𝑥2 + 𝑏1𝑥                      when      x ≤ 𝐿1 − 𝑟   (A1)  

        𝑢(𝑥) = 𝑎3(𝑥 − 𝐿1 + 𝑟)2 + 𝑏3(𝑥 − 𝐿1 + 𝑟) + 𝑐3        𝐿1 − 𝑟 < x ≤ 𝐿1 + 𝑡   (A2) 

               𝑢(𝑥)  = 𝑎2 (𝑥 − 𝐿1 −
𝐿2

2
)

2

+ 𝑐2    𝐿1 + 𝑡 < 𝑥 ≤  𝐿1 +
𝐿2

2
 (A3) 

Set now u and u’ continuous at x = L1 – r and x = L1 + t: 

𝑢(𝐿1 − 𝑟) = 𝑎1(𝐿1 − 𝑟)2 + 𝑏1(𝐿1 − 𝑟) = 𝑐3   (A4) 

      𝑢′(𝐿1 − 𝑟) = 2𝑎1(𝐿1 − 𝑟) + 𝑏1 = 𝑏3  (A5) 

         𝑢(𝐿1 + 𝑡) = 𝑎3(𝑟 + 𝑡)2 + 𝑏3(𝑟 + 𝑡) + 𝑐3  = 𝑎2 (𝑡 −
𝐿2

2
)

2

+ 𝑐2 (A6) 

 𝑢′(𝐿1 + 𝑡) = 2𝑎3(𝑟 + 𝑡) + 𝑏3 = 2𝑎2 (𝑡 −
𝐿2

2
)  (A7) 

Eliminating a3 from Equations (A6) and (A7) gives 

 

        (𝑟 + 𝑡) [2𝑎2 (𝑡 −
𝐿2

2
) + 𝑏3] − 2𝑎2 (𝑡 −

𝐿2

2
)

2

− 2𝑐2 + 2𝑐3 = 0  (A8) 

Given h, t, a1, b1, a2 and c2 and using Equations (A4) and (A5) for b3 and c3. r becomes the only 

unknown in Equation (A8). Solving for r also fixes the values of a3, b3 and c3. The parameters for the 

tendon profiles of the continuous beams are given in Table A1. 
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Table A1. Parameters of tendon profiles. h and max{u(x)} are the eccentricities at the lowest and highest 

point, respectively. 

r t h a1 b1 a2 c2 a3 b3 c3 max{u(x)}/h 

 m m m-1  m-1  m-1  m  

6.393 6.500 0.50 0.00415 -0.091 0.00375 -0.50 0.0080 0.105 0.161 1.009 

  1.00 0.00829 -0.182 0.00750 -1.00 0.0160 0.209 0.322 1.009 

  2.00 0.01659 -0.364 0.01500 -2.00 0.0320 0.419 0.644 1.009 

4.911 5.000 2.00 0.01553 -0.352 0.01350 -2.00 0.0420 0.427 0.930 1.007 

3.931 4.000 0.50 0.00370 -0.086 0.00313 -0.50 0.0130 0.107 0.272 0.983 

  1.00 0.00740 -0.172 0.00625 -1.00 0.0261 0.214 0.545 0.983 

  2.00 0.01481 -0.344 0.01250 -2.00 0.0522 0.428 1.090 0.983 

 


